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Abstract—The paper presents the solution to the stabilization
problem of steady state motions for a holonomic mechanical
system by using relay controllers. This solution is achieved by
proving new theorems on the asymptotic stability of the solution
to a differential equation with a discontinuous right-hand side.
The novelty of the theorems is based on the limiting inclusions
construction and the use of semi-definite Lyapunov functions. As
an example, the stabilization problem of steady-state motion for
a five-link robot manipulator is solved by using relay controller.

Index Terms—differential equation with discontinuous right-
hand side, stability, mechanical system, steady state motion
stabilization

I. INTRODUCTION

The widespread use of relay controllers for technical devices
and processes has led to the need to develop the qualitative
theory of differential equations with discontinuous right-hand
side [1]–[5]. Numerous studies have been devoted to the
stability problem of the solutions for such equations. Let us
highlight the main publications in our opinion which deal with
a solution to this problem in the study direction of the pre-
sented paper. Various aspects on the generalization of classical
Lyapunov theorems for equations with a discontinuous right-
hand side and differential inclusions are considered in [3], [6]–
[9]. The asymptotic stability theorem for such equations in an
autonomous case is proved in [10], when Lyapunov function
with a semi-definite time derivative exists.

In the papers [11]–[14], theorems on the application of
Lyapunov function with a semi-definite time derivative to the
asymptotic stability problem of non-autonomous differential
equations with a discontinuous right-hand side are proved.

The development of the direct Lyapunov method in terms
of the use of semi-definite Lyapunov functions in the stability
study for continuous non-autonomous differential equations
[15]–[17] made it possible to obtain new methods for solution
to the control problems of mechanical systems [18]–[20].

The aim of this paper is to obtain new results in the direction
presented in [11], [12], [21] and to solve on their basis the
problems of applying the relay controllers to stabilize the
steady state motions of controlled mechanical systems.

This work was financially supported by the Russian Foundation for Basic
Research under Grant [19-01-00791a].

The remainder of the paper is organized as follows. Section
II presents the necessary for the following study qualitative
properties of an equation with a discontinuous right-hand
side. In Section III, theorem on the quasi-invariance of the
positive limit set of a bounded solution of such an equation has
been solved under the assumption of the Lyapunov function
with a semi-definite time derivative existence. On the basis
of this theorem, in Section IV, new theorems on sufficient
conditions for the asymptotic stability of the zero solution
have been proved. Section V presents the solution to the steady
state motion stabilization problem of a holonomic mechanical
system with cyclic coordinates. In Section VI, the steady state
motion stabilization problem for a five-link robot manipulator
has been solved.

II. PRELIMINARY NOTIONS

Let Rn be an n-dimensional real linear space. Let (·)′ be
a transpose operation. Let x = (x1, x2, . . . , xn)

′ be a vector
of Rn. Denote by |x| the vector norm in Rn, R = (−∞,∞),
R+ = [0,∞).

Consider the differential equation

ẋ = g(t, x), (1)

where the right-hand side is the function g defined in some
domain R × D, the set D ⊂ Rn can be represented as
D = D0 ∪ M , D0 = D1 ∪ D2 ∪ . . . ∪ Dl. The sets Di

(i = 1, 2, . . . , l) are disjoint subdomains of D. The set M of
zero measure consists of the boundaries of Di (i = 1, 2, . . . , l).
In each subdomain R×Dj (j = 1, 2, . . . , l), the function g is
continuous.

Assume that for each fixed point t ∈ R, the function g has a
finite limit, i.e. g(t, xk) → g0 = constant as xk → x0 ∈ M ,
where the value of the vector g0 depends on the choice of the
sequence xk → x0. Thus, at each time point t ∈ R, M is the
set of discontinuity of the function g.

Let for each point (t, x) ∈ R ×D, G(t, x) be the smallest
convex closed set containing all limit values of the function
g(t, xk), where xk ∈ D0, xk → x as k → ∞.

Definition 1. [3] Solution of (1) is a solution to the
differential inclusion

ẋ ∈ G(t, x) (2)
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which is an absolutely continuous function x(t) defined on
some interval (α, β) such that the inclusion

ẋ(t) ∈ G(t, x(t))

holds almost everywhere for t ∈ [a, b] ⊂ (α, β).
An important method of modelling the systems (1) is the

extension of the function g such that the inclusion (2) is
suitable for an approximate description of the processes in
the real world systems.

It is convenient to determine when the right-hand side of
(1) has the form [1], [3]

g = g(t, x, u1(t, x), u2(t, x), . . . , ur(t, x)), (3)

where the function g = g(t, x, u1, u2, . . . ur) is continuous in
all its variables, and scalar functions uj(t, x) (j = 1, 2, . . . , r)
are piecewise continuous in the domain R × D0, i.e. every
function uj(t, x) is continuous on the set R×D except for the
set M of the zero measure for fixed t ∈ R, while the function
uj(t, x) has finite limits as (tk, xk) → (t, x) ∈ R ×Mj , and
the set of all limiting values of uj(t, x) is convex.

A multi-valued function

g(t, x) = g(t, x, U1(t, x), . . . , Ur(t, x))

can be introduced such that for every point (t, x), the function
g(t, x) has the values defined by independent changes of
U1(t, x), . . . , Ur(t, x).

Assume that a scalar function uj(t, x) is discontinuous on
the smooth surface

Sj = {x ∈ D : ψj(x) = 0, ψj ∈ C1(D)}.

Denote by M the following union

M =

m⋃
j=1

Sj (m ≤ r).

At the points belonging to one or several surfaces at the
same time, for example the surfaces S1, S2, . . . , Sm, one can
assume the following (if a solution of (1) cannot immediately
leave such a surface or the intersection of these surfaces)

ẋ = g(t, x, ueq1 (t, x), . . . , ueqm(t, x), um+1(t, x), . . . , ur(t, x)),
(4)

where the equivalent controllers ueq1 , . . . , u
eq
m are defined so

that the vector g in (3) touches the surfaces S1, S2, . . . , Sm

and so that the value ueqi (t, x) is contained in the segment
with the endpoints u−i (t, x) and u+i (t, x), where u−i and u+i
are the limit values of the function ui on the both sides of the
surface Si, i = 1, . . . ,m.

So, the functions ueqi (t, x) (i = 1, . . . ,m) are defined from
the following system of equations

∇ψi(x) · g(t, x, ueq1 , u
eq
2 ,

. . . , ueqm , um+1(t, x), . . . , ur(t, x)) = 0, i = 1, 2, . . . ,m.
(5)

Definition 2. [3] Solution of (4) is an absolutely con-
tinuous function x = x(t) which outside the surfaces Sj

(j = 1, . . . ,m) satisfies (1), (3), and on these surfaces and
their intersections satisfies (4).

Assume that the function g in (1), (3) is linear on u1, u2, . . .,
ur; all the surfaces Sj (j = 1, 2, . . . ,m) are distinct, and at
the points of their intersection, the normal vectors are linearly
independent. In this case, Definitions 1 and 2 are the same
ones [3].

Further, when studying the control problems, assume that
the following holds.

For two non-empty closed sets A and B from Rn, de-
fine the value β(A,B) = sup(ρ(a,B), a ∈ A), where
ρ(a,B) = inf(|b − a|, b ∈ B). Following [3], assume
that the multivalued function G(t, x) in the domain R × D
satisfies the following conditions: for all (t, x) ∈ R ×D, the
set G(t, x) is non-empty, bounded, closed, convex, and the
function G(t, x) is β−continuous in (t, x) which means that
β(G(t, x), G(t0, x0)) → 0 as (t, x) → (t0, x0). Note that this
condition is sufficient for the existence of a solution of (1) for
each initial point (t0, x0) ∈ R×D.

Assume that the right-hand side of (1) satisfies the con-
ditions: for each compact sets K ⊂ D and Kj ⊂ Dj

(j = 1, 2, . . . , l) there exist the constants m = m(K) and
Lj = Lj(Kj) (j = 1, 2, . . . , l) such that

|g(t, x)| ≤ m, |g(t, x2)− g(t, x1)| ≤ Lj |x2 − x1| (6)

for all (t, x) ∈ R×K and all (t, x1), (t, x2) ∈ R×Kj .
According to [22], [23], one can construct a space of

functions F : R×D0 → Rn wherein the family of translates
{gτ (t, x) = g(τ + t, x), τ ∈ R, (t, x) ∈ R × D0} is
precompact. Accordingly, for any sequence tl → ∞, there
exist both a subsequence {tk} ⊂ {tl} and a function g∗ ∈ F
such that

g∗(t, x) =
d

dt
lim
k→∞

t∫
0

g(tk + τ, x)dτ.

Then, in each domain R ×Dj one can construct a family
of limiting equations [23]

ẋ = g∗(t, x), g∗(t, x) =
d

dt
lim

tk→∞

t∫
0

g(tk + τ, x)dτ. (7)

Let construct a set of limiting equations (7) for each
subdomain Dj ⊂ D (j = 1, 2, . . . , l) and define the general set
of limiting equations for the domain D0 = D1∪D2∪ . . .∪Dl

according to the following definition.
Definition 3. Equation (7) defined in the domain D0 =

D1 ∪D2 ∪ . . .∪Dl is called limiting one to (1) in relation to
the sequence tk → +∞, if it is defined as the limit to (1) for
this sequence in each domain Dj (j = 1, 2, . . . , l).

Let some equation (7) be a limiting one for (1) with respect
to the sequence tk → ∞. Similarly to the previous one, for
each point (t, x) ∈ R × D define by G∗(t, x) the smallest
convex set containing the sets {g(tk+t, xk) : tk → ∞, xk →
x ∈ D} and {g∗(t, xk) : xk → x ∈ D}.
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Define the limiting inclusion as follows

ẋ ∈ G∗(t, x). (8)

Definition 4. Similarly to Definitions 1 and 2, we call x =
x∗(t) a solution to the limiting inclusion (8), if this function
is an absolutely continuous one on the interval (α, β) and is
such that

ẋ(t) ∈ G∗(t, x(t))

for almost all t ∈ [a, b] ⊂ (α, β).
Definition 5. Let x = x(t) be a solution of (1) defined for

all t ≥ t0. A point p ∈ D is called a limiting point for x =
x(t), if there exists a sequence tk → ∞ such that x(tk) → p
as k → ∞. The set ω+(x(t)) of all such points is a positive
limit set.

Theorem 1. Let x = x(t) be some solution of (1) according
to Definition 1, bounded for all t ≥ t0 by some compact set
K ⊂ D, i.e. {x(t), t ≥ t0} ⊂ K. Then, the positive limit set
ω+(x(t)) of this solution is weakly quasi-invariant, namely, for
each point p ∈ ω+(x(t)), there exist both a limiting inclusion
(8) and some of its solution x = x∗(t) such that x∗(0) = p,
{x∗(t), t ∈ R} ⊂ ω+(x(t)).

Proof. Let the limit point p ∈ ω+(x(t)) be defined by the
sequence tj → ∞. From the condition (6), one can see that
the solution x = x(t) is a uniformly continuous function in
t ∈ [t0,∞). Hence, there exist both the subsequence {tk →
∞ k → ∞} ⊂ {tj → ∞ j → ∞} and the function x =
x∗(t), t ∈ R such that xk(t) = x(tk + t) → x∗(t) as k →
∞ uniformly in [−T, T ] for every T > 0. Obviously, the
function x∗(t) is absolutely continuous in t ∈ [a, b] ⊂ R,
x∗ ∈ ω+(x(t)) for all t ∈ R.

Without loss of generality, one can assume that the sequence
{gk(t, x) = g(tk+t, x)} converges to g∗ ∈ F as tk → ∞. Let
us define the corresponding multivalued function G∗(t, x).

The following cases are possible.
Case 1. For the function x = x∗(t), the following holds

x∗(t) ∈ Dj for t ∈ (α, β) ⊂ R.
Then, for sufficiently large k one can obtain that the solution

x = x(t) of (1) satisfies

xk(t) = xk(γ) +
t∫
γ

gk(τ, xk(τ))dτ, α1 < γ < β1

gk(t, x) = g(tk + t, x)

for all t ∈ (α1, β1) ⊆ (α, β).
From this, passing to the limit as k → ∞, one can obtain

that x = x∗(t) is a solution of (7) for t ∈ (α, β).
Case 2. The function x = x∗(t) is such that x∗(t) ∈M for

t ∈ [α, β], (α ≤ β).
For the sequence xk(t), the following equality holds

xk(t) = xk(γ) +
t∫
γ

Gk(τ, xk(τ))dτ, α < γ < β1,

Gk(t, x) = G(tk + t, x)

for all t ∈ (α1, β1) ⊃ [α, β].

On the base from [2], [13], one can find that the convergence
of Gk(t, x) → G∗(t, x) implies that ẋ∗(t) ⊂ G(t, x∗(t)), t ∈
(α1, β1).

Thus, x = x∗(t) is a solution of (8) defined for all t ∈ R.
Theorem 1 is proved.

III. QUASI-INVARIANCE PRINCIPLE

For the function V (t, x) ∈ C1(R+ × D) define the upper
derivative by virtue of (1) using the equality [3]

V̇ ∗ =

(
dV

dt

)∗

= sup
y∈G(t,x)

(
Vt +

n∑
i=1

∂V

∂xi
yi

)
, (9)

where Vt = ∂V (t, x)/∂t.
Accordingly, for each solution x = x(t) of (1) there exists

a time derivative of V (t, x) such as

V̇ =
d

dt
V (t, x(t)) = Vt +

n∑
i=1

∂V

∂xi
ẋi(t),

and this derivative satisfies the inequality V̇ ≤ V̇ ∗.
Assumption 1. Assume that the derivative V̇ ∗(t, x) defined

by (9) for all (t, x) ∈ R+×DH is estimated by the inequality

V̇ ∗(t, x) ≤ −W (t, x) ≤ 0, (10)

where the function W (t, x) is bounded and uniformly con-
tinuous on the set R+ × K, namely, for each compact set
K ⊂ D there exists m = m(K) > 0 and for each small
ε > 0 one can find δ = δ(ε,K) > 0 such that for all
(t, x), (t1, x1), (t2, x2) ∈ R+ ×K satisfying the relationships

|t1 − t2| < δ, |x1 − x2| < δ

the following inequalities hold

W (t, x) ≤ m(K), |W (t2, x2)−W (t1, x1)| < ε.

Introduce the family of limiting functions by means of the
relation [24]

lim
tkl→∞

W (tkl + t, x) =W ∗(t, x).

Definition 6. Let tk → ∞ be some sequence, and let t ∈ R,
c ∈ R be some constants. Define the set V −1(t, c) as follows

V −1
∞ (t, c) = {x ∈ D : ∃xk → x, V (tk + t, xk) → c}.

Definition 7. [15] The limiting to (1) equation (8) and the
limiting to W = W (t, x) function W ∗ = W ∗(t, x) combine
the limiting pair (G∗,W ∗), if they are the limiting ones for
the same sequence tk → +∞. Functions G∗ and W ∗ form
a limiting pair (G∗,W ∗), if they are limiting for the same
sequence tk → ∞. The set V −1

∞ (t, c) defined by the same
sequence tk → ∞ is said to be corresponding to the pair
(G∗,W ∗).

Theorem 2 (Quasi-invariance principle). Assume that:
1) for all t ≥ t0, the solution x = x(t) of (1) is bounded

by some compact K ⊂ D;
2) Lyapunov function exists V ∈ C1(D), V (t, x) ≥ m(K)

for all (t, x) ∈ R × K, whose time derivative satisfies the
inequality (10).
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Then, for each limit point p ∈ ω+(x(t)), there exist both a
limiting pair (G∗,W ∗) and some solution x = x∗(t), x∗(0) =
p of inclusion (8) such that {x∗(t), t ∈ R} ⊂ ω+(x(t)),
W ∗(t, x∗(t)) ≡ 0, x∗(t) ∈ V −1

∞ (t, c0) for some constant c0.
Proof. It follows from the conditions of the theorem that for

the solution x = x(t) of (1) there exists a real c = c0 ≥ m(K)
such that

V (t, x(t)) → c0 as t→ ∞. (11)

Let the limit point p ∈ ω+(x(t)) be defined by the sequence
tk → ∞. Let (G∗,W ∗) be the corresponding limiting pair.
According to Theorem 1, one can assume that the following
holds xk(t) = x(tk + t) → x∗(t), x∗(0) = p as tk → +∞.
Moreover, x = x∗(t) is some solution of the corresponding
inclusion (8) such that

{x∗(t), t ∈ R} ⊂ ω+(x(t)).

From (11), it follows that for each t ∈ R

V (tk + t, xk(t)) = V (tk + t, x(tk + t)) → c0.

Therefore, x∗(t) ∈ V −1
∞ (t, c0) for all t ∈ R.

From condition 2 of Theorem 2 one can also find the
inequality

V (tk + t, xk(t))− V (tk, xk(0)) ≤ −
t∫

0

Wk(τ, xk(τ))dτ ≤ 0,

(12)
where Wk(τ, x) =W (tk + τ, x).

Passing to the limit in (12) as tk → +∞, one can obtain
that

W ∗(t, x∗(t)) ≡ 0.

Thus, Theorem 2 is proved.

IV. STABILITY THEOREMS

Let D = {x ∈ Rn : |x| < d, 0 < d ≤ +∞}. Assume that
the function g(t, x) satisfies the condition g(t, 0) ≡ 0. Thus,
the equation (1) and inclusion (8) have the zero solution x = 0.

The following result holds, where a1, a2 ∈ K (K is a class
of continuous functions ai : R+ → R+ such that ai(0) = 0
and ai(y) is strictly increasing for all y ∈ R+ [25]).

Theorem 3. Assume that: 1) there exists a positive definite
function V = V (t, x), i.e.

V (t, x) ≥ a1(|x|);

2) the time derivative of the function V by virtue of (1)
satisfies

V̇ ≤ −W (t, x) ≤ 0;

3) for each limiting pair (G∗,W ∗), the set {V −1
∞ (t, c) :

c = c0} ∩ {W ∗(t, x) = 0} does not contain any solutions of
ẋ ∈ G∗(t, x) except for x = 0.

Then, the zero solution x = 0 of (1) is weakly asymptotically
stable.

Theorem 4. Assume that: 1) there exists a positive definite
function V = V (t, x) admitting an infinitely small upper limit,
i.e.

a1(|x|) ≤ V (t, x) ≤ a2(|x|);

2) the time derivative of the function V by virtue of (1)
satisfies

V̇ ≤ −W (t, x) ≤ 0;

3) for each limiting pair (G∗,W ∗) the set {W ∗(t, x) = 0}
does not contain any solutions of ẋ ∈ G∗(t, x) except for
x = 0.

Then, the zero solution x = 0 of (1) is uniformly asymptot-
ically stable.

Choose some compact set K0 = {x ∈ Rn : |x| ≤ d0 < d}
and introduce the set Φ of the functions φ : R+ → K0 such
that

|φ(t2)− φ(t1)| ≤ L(K0)|t2 − t1| ∀t1, t2 ∈ R+.

Obviously, the function φ is absolutely continuous, and if
the function φ∗ : R+ → K0 is limiting for {φk(t) = φ(tk +
t), tk → +∞, t ≥ 0}, then the function φ∗(t) ∈ Φ is also
absolutely continuous.

For the vector ψ : Rn → Rm defining the surface Sj

(j = 1, 2, . . . ,m), introduce the norm of ψ as follows

∥ψ∥2 =

m∑
j=1

ψ2
j .

Definition 8. The zero state x = 0 is uniformly asymptot-
ically stable with respect to both the set of functions Φ and
the set {x ∈ K0 : ψ(x) = 0}, if :

1) (∀ε > 0) (∃δ = δ(ε) > 0) (∀x0 : |x0| < δ) (∀φ ∈ Φ :
φ(0) = x0) (∀t ≥ 0) |φ(t)| < ε;

2) (∃∆, 0 < ∆ < d0) (∀ε > 0) (∃T = T (ε) > 0) (∀x0 :
|x0| ≤ ∆) (∀φ ∈ Φ, φ(0) = x0) (∀t ≥ T ) |φ(t+ T )| < ε.

Theorem 5. Under conditions 1 and 2 of Theorem 1, we
also assume that:

3) for each limiting pair (g∗,W ∗), the set

{W ∗(t, x) = 0} ∩ {x ∈ Rn : |x| ≥ µ > 0} ∩D0

does not contain any solutions of the equation ẋ = g∗(t, x);
4) the zero state x = 0 is uniformly asymptotically stable

with respect to both the set of functions Φ and the set {x ∈
K0 : ψ(x) = 0}.

Then, the zero solution x = 0 of (1) is asymptotically stable.
Proof. From conditions 1 and 2 of Theorem 1 it follows

that the solution x = 0 of (2) is uniformly stable [7].
Let x = x(t), x(t0) = x0 be some solution of (2) bounded

by the compact K0 for all t ≥ t0. Let V (t) = V (t, x(t)) be
Lyapunov function candidate along the solution x(t). Define
the set ω+(x(t)) of all limit points of the solution x(t) as
follows

ω+(x(t)) = {p ∈ K0 : ∃tk → ∞, x(tk) → p}.
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Let p ∈ ω+(x(t)) ∩ D0. Then, there exist both a limiting
equation (7) and its solution x = φ(t), φ(0) = p such as

{φ(t) : t ∈ [0, γ), γ > 0} ⊂ D0.

From the results in [15], [16], it can be shown that by virtue
of the conditions 1, 2, and 3 of Theorem 2, the following holds
V (t) → 0 as t→ ∞.

Assume otherwise ω+(x(t)) ⊂ {ψ = 0}. Then, for each
point p ∈ ω+(x(t)), there exists a function φ∗ ∈ Φ such as
x(tk + t) → φ∗(t) uniformly on t ∈ [0, T ] for each T > 0 as
tk → ∞.

But the condition 4 of the theorem implies that
a2(|φ∗(t)|) → 0 as t→ ∞. By the condition 1 of Theorem 1
one can also obtain that a2(|x(t)|) → 0 as t→ +∞.

Thus, along each solution x(t) of (2) such that x(t) ∈ K0

one can obtain that |x(t)| → 0 as t → ∞. Accordingly, the
solution x = 0 of (2) is asymptotically stable. Thus, one can
get the end of the proof.

Theorem 6. Assume that one can find the Lyapunov
function candidate V = V (t, x) satisfying the conditions:

1) 0 ≤ V (t, x) ≤ ∥ψ(x)∥2;
2) V̇ ∗(t, x) ≤ −∥ψ(x)∥ ;
3) the zero state x = 0 of (1) is uniformly asymptotically

stable with respect to the motions of (1) or it is lying on the
set {ψ(x) = 0}.

Then, the zero solution x = 0 of (1) is uniformly asymptot-
ically stable.

Note that the proof of Theorem 6 is similar to one of
Theorem 5.

V. ON THE CONTROL PROBLEM OF MECHANICAL
SYSTEMS WITH CYCLIC COORDINATES

Let us consider a mechanical system with holonomic
stationary constraints described by n generalized coordi-
nates wherein m coordinates r = (r1, r2, . . . , rm)′ (1 ≤
m < n) are positional, the rest (n − m) coordinates s =
(s1, s2, . . . , sn−m)′ are cyclic.

The kinetic energy T of the mechanical system can be
written as follows

2T = ṙ′Arr(r)ṙ + ṙ′Ars(r)ṡ+ ṡ′Asr(r)ṙ + ṡ′Ass(r)ṡ,

where Arr(r) ∈ Rm×m, A′
sr(r) = Ars(r) ∈ Rm×(n−m), and

Ass(r) ∈ R(n−m)×(n−m) are the blocks of the mechanical
system’s inertia matrix.

By using the so-called Routhian which is the vector of
conjugate momenta p = (p1, p2, . . . , pn−m)′ corresponding to
the cyclic coordinates s, one can obtain the motion equations
of the mechanical system as Routh equations [26], [27]

d

dt

(
∂R

∂ṙ

)
− ∂R

∂r
= −∂Π

∂r
+Qr + Ur,

dp

dt
= Qs + Us, ṡ = −∂R

∂p
,

(13)

where R is the Routh function, R = R2 + R1 + R0,
2R2 = ṙ′B2(r)ṙ, B2(r) = Arr(r) − Ars(r)A

−1
ss (r)Asr(r),

R1 = p′B1(r)ṙ, B1(r) = A−1
ss (r)Asr(r), 2R0 = −p′B0(r)p,

B0(r) = A−1
ss (r), Π = Π(r) is the potential energy, Q =

(Qr, Qs)
′ is the vector of generalized forces, U = (Ur, Us)

′

is the vector of control inputs.
Consider the case when the forces Qr are a combina-

tion of gyroscopic and dissipative forces, Qr = Qr(t, r, ṙ),
Qr(t, r, 0) = 0, Q′

r ṙ ≤ 0, and the forces Qs are perturbing
ones which are bounded, i.e. Qs = Qs(t, q, q̇), |Qs(t, q, q̇)| ≤
h(t) ≤ h0.

If Qs ≡ 0, Ur = 0, Us = 0, then the equalities

∂

∂r
(R0 −Π) ≡ 0

define the perturbed solutions of the system (13) as follows

ṙ = 0, r = r(0) = constant, p = p(0) = constant,
ṡ = ṡ(0) = B0(r

(0))p(0),
(14)

which are called the stationary motions [26], [27].
Consider the solution to the stationary motion stabilization

problem.
Solution 1. Construct the controller

Ur = −F (t, r)ṙ − ∂ΠU (r)

∂r
, (15)

Us = (−µ1 sign(ṡ1 − ṡ
(0)
1 ),−µ2 sign(ṡ2 − ṡ

(0)
2 ),

. . . ,−µn−m sign(ṡn−m − ṡ
(0)
n−m))′,

(16)

where the functions F (t, r) and ΠU (r) satisfy the following
relationships

ṙ′F (t, r)ṙ ≥ f0∥ṙ∥2, f0 > 0, µj > h0,
j = 1, 2, . . . , n−m,

∂ΠU (r)

∂r

∣∣∣∣
r=r(0)

= 0,

∥∥∥∥ ∂∂r (R0 −Π−ΠU )

∥∥∥∥ ≥ δ(ε) > 0

as p = p(0), ∥r − r(0)∥ = ε > 0.

(17)

Choose the Lyapunov function candidate such as

V (ṙ, r, p) = R2+Π+ΠU −R0+

(
∂R0

∂p

)′
∣∣∣∣∣
p=p(0)

(p− p(0)).

(18)
For the time derivative of (18) by virtue of (13) one can

find the estimation

V̇ ≤ −f0∥ṙ∥2 −
n−m∑
j=1

(µj − h0)|ṡj − ṡ
(0)
j |.

In accordance with Theorem 4, one can obtain the following
solution to the problem.

Statement 1. Let the function V (ṙ, r, p)−V (0, r(0), p(0)) is
positive definite with respect to (ṙ, r−r(0), p−p(0)). Then, the
controller (15), (16) provides the uniform asymptotic stability
of the motion (14).
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Solution 2. Assume that U = (U ′
r, U

′
s)

′ is such that the
controller Ur is defined by (15) and

Us = (−µ1 sign(p1 − p
(0)
1 ),−µ2 sign(p2 − p

(0)
2 ),

. . . ,−µn−m sign(pn−m − p
(0)
n−m))′

(19)

and the conditions (17) hold.
To derive this solution, we define two Lyapunov functions

candidates

V1 = ∥p− p(0)∥2, V2 = R2 + V3,

where V3(r, p(0)) = Π(r)−ΠU (r)−R0(r, p
(0)).

For the time derivative of the first function V1, one can find

V̇1 ≤ −2

n−m∑
j=1

(µj − h0)|pj − p
(0)
j | ≤ 0.

For the time derivative of the second function V2, one can
obtain

V̇2 ≤ −f0∥ṙ∥2 ≤ 0.

Using Theorem 6, one can obtain the following statement.
Statement 2. Let the function V3(r, p(0))−V3(r(0), p(0)) be

positive definite with respect to p− p(0). Then, the controller
(15), (19) provides the uniform asymptotic stability property
for the motion (14).

VI. SOLUTION TO THE STATIONARY MOTION
STABILIZATION PROBLEM FOR A FIVE-LINK ROBOTIC

MANIPULATOR

The model of a five-link robotic manipulator (see Fig.1)
can described as follows. Each link of the manipulator is
represented as a solid body. The kinematic pairs of the
manipulator are assumed to be single-link, their geometric
centers are denoted by Ok (k = 1, 2, . . . , 5). The centers
of mass Ck (k = 1, 2, . . . , 5) of the links lie on the axes
OkOk+1, the axes OkOk+1 (k = 1, 2, . . . , 5) are their axes
of symmetry. The first base link is vertical, it rotates around
O1O2, its rotation angle is θ1. The second kinematic pair
allows rotation of the second link around the horizontal axis
passing through O2. The third kinematic pair allows rectilinear
movement of the third link along O2O4 (O3 ∈ O1O4), let
us introduce the notation for the displacement of the third
link x = d3 = O1O4. The fourth link can rotate around a
horizontal axis passing through O4 with the angle of rotation
θ4. The fifth link simulating the gripper allows the rotation
around O4O5, its rotation angle is denoted by θ5.

We will assume that the centers of mass Ck of the links lie
on the axes OkOk+1 and these axes are the axes of symmetry
of the corresponding links (k = 1, 2, . . . , 5). Let’s introduce
the main central axes Ckxk, Ckyk, Ckzk of the links. We will
assume that for links 1 and 5 the axes C1z1 and C5z5 are
the axes of symmetry. For links 2, 3 and 4 such axes are
C2x2, C3x3 and C4x4 respectively. Let us assume that the
axes C2z2, C3z3 and C4z4 are horizontal. The masses of the
links are denoted by mk (k = 1, 2, . . . , 5), and their main
central moments of inertia are denoted by I(k)x , I(k)y and I(k)z .

Fig. 1. Model of a five-link robotic manipulator.

Accordingly, we have I(1)x = I
(1)
y , I(5)x = I

(5)
y , I(2)y = i

(2)
z ,

I
(3)
y = I

(3)
z , I(4)y = I

(4)
z . Let’s introduce the lengths O2C2 =

l2, C3O4 = l3, O4O5 = 2O4C4 = 2l4, and O5C5 = l5.
By using Koenig theorem we can find the kinetic energy

Ti of each link i = 1, 2, . . . , 5 as the kinetic energy of an
absolutely rigid body.

T1 =
1

2
I(1)z θ̇21,

T2 = 1
2m2l

2
2(sin

2 θ2θ̇
2
1 + θ̇22)

+ 1
2 (I

(2)
x θ̇21 cos

2 θ2 + I
(2)
z (θ̇21 sin

2 θ2 + θ̇22)),

T3 = 1
2m3(ẋ

2 + (x− l3)
2θ̇2z + (x− l3) sin

2 θ2 · θ̇21)
+ 1

2 (I
(3)
x θ̇21 cos

2 θ2 + I
(3)
z (θ̇21 sin

2 θ2 + θ̇22)),

T4 = 1
2m4((ẋ+ l4θ̇4 sin θ4)

2 + (xθ̇2 − l4θ̇4 cos θ4)
2

+(x cos θ4 − l4 sin(θ2 + θ4))
2θ̇21

+ 1
2 (I

(4)
x θ̇21 cos

2(θ2 + θ4)

+I
(4)
z (θ̇21 sin

2(θ2 + θ4) + (θ̇2 + θ̇4)
2)),

T5 = 1
2m5((ẋ+ (2l4 + l5)θ̇4 sin θ4)

2

+(xθ̇2 − (2l4 + l5)θ̇4 cos θ4)
2

+(x cos θ − (2l4 + l5) sin(θ2 + θ4))
2θ̇21

+ 1
2I

(5)
x (θ̇1 cos(θ2 + θ4) + θ̇5)

2

+ 1
2I

(5)
z (θ̇21 cos

2(θ2 + θ4) + (θ̇2 + θ̇4)
2).

The kinetic energy of the manipulator is given by

T = T1 + T2 + T3 + T4 + T5.

The potential energy of the manipulator has the form

Π = −m2gl2 cos θ2 −m3g(x− l3) cos θ2
−m4g(x cos θ2 + l4 cos(θ2 + θ4))

−m5g(x cos θ2 + (2l4 + l5) cos(θ2 + θ4)).

The rotation angle of the first link θ1 is a cyclic coordinate,
since

∂T

∂θ1
=
∂Π

∂θ1
= 0.
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The manipulator has a steady state motion of the form (14)
such as

θ̇1 = θ̇
(0)
1 , θ̇2 = θ̇4 = θ̇5 = 0, ẋ = 0,

θ2 = θ
(0)
2 , θ4 = θ

(0)
4 , θ5 = θ

(0)
5 , x = x(0).

(20)

In the motion (20), the first link rotates at a constant angular
velocity around the vertical, the remaining links are relatively
motionless.

According to Solution 1, for any disturbing torque |Q1| ≤
µ0 < µ, the rotation (20) is stabilized by the control torque

Us = −µ sign(θ̇1 − θ̇
(0)
1 ),

Urj = −µ sign(θ̇j + k(sin(θj − θ
(0)
j )), j = 2, 4, 5

Ur3 = −µ sign(ẋ+ k(sin(x− x(0)))

(21)

where µ > 0 and k > 0.
Choose the control parameters as

k = 1.4, µ = 100.

Fig. 2. Time evolution of the first link angular velocity.

Fig. 3. Time evolution of the second link rotation angle.

Fig. 4. Time evolution of the third link linear displacement

Fig. 5. Time evolution of the forth link rotation angle.

Fig. 6. Time evolution of the fifth link rotation angle.
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The results of numerical simulation for the robot manipula-
tor under the controller (21) show the steady state stabilization
as can be seen in Fig. 2 – 6.

VII. CONCLUSION

The paper presents the development of the direct Lyapunov
method in the stability study of the differential equations
with discontinuous right-hand side on the basis of limiting
equations and semi-definite Lyapunov functions. The devel-
opment consists in the derivation of new theorems on the
limiting behavior of solutions, the asymptotic stability of the
zero solution. At the same time, the obtained structure of
a limiting differential inclusion is convenient for modeling
of controlled mechanical systems with relay controller. The
effectiveness of this development is shown in solving the
steady state motions stabilization problem of a holonomic
mechanical system by relay controller. The problem of using
relay controllers in the steady state motion stabilization of a
five-link robot manipulator has been solved.
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