
Tool-based Support for the FAIR Principles for
Control Theoretic Results: The “Automatic Control

Knowledge Repository”
Carsten Knoll

Institute of Control Theory
Dresden University of Technology

Dresden, Germany
carsten.knoll@tu-dresden.de

Robert Heedt
Institute of Control Theory

Dresden University of Technology
Dresden, Germany

robert.heedt@tu-dresden.de

Abstract—In 2016 a collection of guiding principles for the
management of scientific data was proposed by a consortium
of scientists and organizations under the acronym FAIR (Find-
ability, Accessibility, Interoperability, Reusability). As many
other disciplines, control theory also is affected by the (mostly
unintended) disregard of these principles and to some degree
also suffers from a reproducibility crisis. The specific situation
for that discipline, however, is more related to software, than
to classical numerical data. In particular, since computational
methods like simulation, numeric approximation or computer
algebra play an important role, the reproducibility of results
relies on implementation details, which are typically out of scope
for written papers. While some publications do reference the
source code of the respective software, this is by far not standard
in industry and academia. Additionally, having access to the
source code does not imply reproducibility due to dependency
issues w. r. t. hardware and software components. This paper
proposes a tool based approach consisting of four components to
mitigate the problem: a) an open repository with a suitable data
structure to publish formal problem specifications and problem
solutions (each represented as source code) along with descriptive
metadata, b) a web service that automatically checks the solution
methods against the problem specifications and auxiliary software
for local testing, c) a computational ontology which allows for
semantic tagging and sophisticated querying the entities in the
repo and d) a peer-oriented process scheme to organize both
the contribution process to that repository and formal quality
assurance.

Index Terms—computational methods in control theory, test
driven development, semantic technology, computational ontol-
ogy, reproducibility, FAIR principles

I. INTRODUCTION

The scientific advances of the past have been possible
because researchers either added their own ideas to earlier ones
or modified them to draw different conclusions. This process
is mainly facilitated by the publication of results. For the
creative individual it is necessary to fully understand published
results in their important details like assumptions, reasoning,
conclusions – both for improving and for criticizing. Despite
omnipresent digital technology, the main medium for the nec-
essary information transport is still (written) natural language.
Like in many other disciplines, scientific communication in
control theory typically is enriched with an ample stock of

mathematical symbols and other formalisms such as block
diagrams, but natural language still provides the necessary
context.

However, since more and more computational methods
play a crucial role in systems and control research, it be-
comes increasingly difficult to fully understand the essence
of many publications in contrast to merely taking notice of
their statements and claims. The difficulties of software in
relation to reproducibility have been recognized early on [1]
and are still a frequent point of discussion [2–6]. Recently,
the journal ReScience C [7] was founded specifically to doc-
ument examples of these issues. From the perspective of the
authors, full understanding implies the ability to independently
reproduce the results from a ground of common assumptions.
For (conventional) mathematical proofs and similar reasoning,
natural language and written formal symbols therefore still
seem appropriate. On the other hand, for results that practically
cannot be reproduced (i. e. understood) without using com-
putation (like simulation, numerical linear algebra, or sym-
bolic calculations with computer algebra systems), it appears
naturally that all information that is necessary to reproduce
these results should be provided along with the published
description in natural language. This includes experimental
data [8–10] but also, and arguably more important in our field,
source code for simulations and other types of calculations
[11–17]. Even with the information pieces seemingly available
in published texts and source code, interested readers still often
run into road blocks caused by differences in the environment,
configuration, or missing documentation. Recent efforts there-
fore propose employing so called Continuous Integration (CI)
[18–20], a concept explained below.

However, reproducibility is only one of several problem
areas in which significant research resources are dissipated.
In 2016 an international consortium of scientists and orga-
nizations published a joint appeal to “improve the infras-
tructure supporting the reuse of scholarly data” [21]. In this
widely recognized publication a set of guiding principles
for the management of scientific data was proposed under
the acronym FAIR (Findability, Accessibility, Interoperability,

 56

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 1, NO. 1, JUNE 2021, pp. 56-67 

Cite as: C. Knoll and R. Heedt, “Tool-based Support for the FAIR Principles for Control Theoretic Results: The ’Automatic Control Knowledge Repository’”, 

Syst. Theor. Control Comput. J., vol. 1, no. 1, pp. 56–67, Jun. 2021. 
DOI: 10.52846/stccj.2021.1.1.11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Reusability)1.
This perspective reflects the fact that before reproduction of

scientific results can be considered, those results have to be
found, accessed and evaluated w. r. t. relevance. While classical
search engines are doubtlessly helpful, they operate mainly
on the syntactical level (e. g. searching for matching words)
and thus are of limited use. An improvement can be expected
by the use of semantic information as this would allow
searching via the meaning of words instead of their syntactical
representation as a string of characters. However, publishing
results with such suitable semantic information requires certain
standardization. Additionally, efficient searching would benefit
greatly from the existence of a central knowledge base.

While the present paper makes extensive use of the term
’knowledge‘, the exact meaning of that term is an (open)
philosophical issue and thus far beyond the scope of this paper.
In this contribution we mainly refer to instrumental and to
conceptual aspects of knowledge: The know how suitable to
solve certain specific problems and the capability to express
relevant statements about such problems and solutions in a
precise and understandable way. This kind of knowledge can
beneficially be represented as a combination of source code,
a so called (computational) ontology (see below) and some
additional metadata.

Assuming that an upcoming publication owes (part of) its
content to computational methods, the present contribution
proposes the following: a) As a supplement to the usual
natural-language-based publications (typically published as
PDF file), the related source code along with semantic meta-
data should be published to a central and open repository
with a suitable data structure. To facilitate this, we further
suggest b) a web service connected to that repository that
automatically checks the solution methods against the problem
specifications and a suite of auxiliary software for local testing.
To enable users to better find existing solutions, independently
of linguistic ambiguity, we propose c) the coupling of said repo
to an ontology which provides both a controlled vocabulary
usable for tagging, as well as an interface for sophisticated
querying based on semantic web standards. Finally, we pro-
pound d) a peer-oriented process scheme to organize the
contribution process (acceptance/refusal) and formal quality
assurance without the need for a central authority.

From the viewpoint of the authors, the proposed approach
of an ”active knowledge repository“ interconnects innovative
technical and social aspects. However, to have any notewor-
thy effect on the above mentioned FAIR-related problems it
must gain some significant support and adoption by other
researchers and therefore must be open to ideas, criticism and
improvement suggestions by the community from an early
stage. Consequently, the presented approach should not be

1See section VI-A for further details. While reusability (of data) and
reproducibility (of scientific results) in general are not identical, for the scope
of this contribution we consider it as similar goals. This is due to the fact
that we aim to apply the FAIR principles to software-based results instead
of mere (numerical) data. For software to be reusable it is necessary to be
functioning and thus its results must be reproducible.

considered a “final solution” but instead a conceptual draft,
which might be the point of departure for further discussion
and iterative development.

The remainder of this paper is structured as follows: Sec-
tion II summarizes relevant established technologies and a
concept for how to integrate them. Section III-A proposes the
above mentioned dedicated structure of the repository, while
Section IV describes how the repository and the proposed
web service can be combined to perform a contribution as
the basic use case of the whole platform. In Section V we
briefly comment on what elements of the concept are already
implemented (see also [22]) and in Section VI-B answer some
critical questions, which are expected to arise for the reader.

Note that the present contribution is an extended version
of the conference paper [23], where the Automatic Control
Knowledge Repository (ACKREP) was firstly introduced. The
extension mainly consists in the development of an ontology
for the domain of control systems engineering (OCSE) and
its coupling to the original ACKREP approach, which enables
better support for the FAIR principles, especially for the find-
ability aspect2. Furthermore, the actual knowledge repository
has also been extended significantly, from originally 9 entities
to currently about 50.

II. EXISTING SOLUTIONS AND INTEGRATION CONCEPT

This section briefly summarizes already existing technolo-
gies and techniques. Then these elements are combined to
form an integrated process concept.

A. Collaboration via Distributed Version Control Systems

A key feature for digitally represented information is the
ability to perform changes (including adding or removing
content) with very little effort. However, keeping track of
such changes is a challenge on its own, especially if changes
are asynchronously made by several individuals. In software
engineering, version control systems (VCS) are used to solve
this problem. During the last decade, decentralized version
control systems (DVCS) and most prominently the software
git have arguably become the de facto standard. A set of
information that is under version control is called a repository.
It typically represents a file system (directories and files)
along with its evolution history. This history is represented
by a collection of incremental snapshots, stored along with
metadata like time stamp or author as a collection of commits.
The order relation inside such a collection is ensured by
using a hash tree (also called Merkle tree [24]) as the data
structure: For each commit, a unique cryptographic hash is
calculated and stored as part of the metadata. Additionally,
each commits metadata also contains the hash code(s) of its
parent(s) commit(s), i. e. the state of the repository to which
the incremental snapshot applies.

This data structure allows for temporary parallelism. Each
node (commit) in the tree can have multiple child nodes

2The aspects accessibility, interoperability and mainly reusability (via
reproducibility) were already covered by the original approach to some extent.

 57

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 1, NO. 1, JUNE 2021, pp. 56-67 

 

 
 



(branches). Moreover, each node can have multiple parent
nodes too, which enables branches to be merged together after
a period of independent evolution, see Fig. 1. Git provides
mechanisms to resolve merge conflicts automatically or man-
ually.

This technology facilitates a distributed development model,
which is adopted by many open source projects: Potential
contributors clone the original repository, i. e. create a local
copy of it, make their own contributions in the form of com-
mits, and turn in a merge request for the original repository.
Typically, some review iterations take place before the external
contribution is merged into the main repository.

B. Automated Tests and Continuous Integration Services

An automated test is a piece of software that executes other
pieces of software and compares their results to (hardcoded)
expected results [25]. Roughly, tests can be subdivided into
unit tests, checking the isolated functioning of a small piece
of software, and black box tests, checking correct input-output
behavior of a larger piece of software.

While creating and maintaining such “unproductive” code
takes additional effort, this investment usually is justified even
for projects of modest complexity by the increased efficiency
of identifying unintended behavior (“bugs”). Additionally,
automated tests are an important technology if heterogeneous
execution environments (e. g. different version of dependency
libraries) should be supported and greatly help to facilitate
distributed software development, see section II-A. Due to
this surplus value of suitable automated testing, so called
continuous integration services were developed. Such a service
basically monitors the state of a repository and whenever this
state changes (e. g. by some uploaded commits) it executes the
set of automated tests that are defined in the repository itself
and reports the result in a suitable way.

C. Semantic Technologies: OWL-Ontologies and SPARQL-
Queries

Currently the most common methods of representing
complex knowledge computationally are semantic triples of

A

B

C

D

E

F

H

I

initial commit

merge commit

newest commit

Fig. 1. Schematic visualization of branching and merging in the distributed
version control system git.

subject-predicate-object-relations and (computational) ontolo-
gies. In this context an ontology is a formal (i. e. machine-
actionable) specification of a shared conceptualization (seman-
tic coverage) of a knowledge domain [26]. In other words, an
ontology specifies which concepts do exist in a domain and
how they are related to another [27–29].

Semantic triples are often represented in RDF3 file format
while for ontologies the Web Ontology Language (OWL) is
prevalent, which can be interpreted as an additional layer on
top of RDF and enables knowledge representation by means
of so called Description Logics [30, 31] which are decidable
fragments of first order predicate logics. The added value of
such an ontological formalization is that it enables automatic
reasoning for a knowledge base.

To be of any use, knowledge bases, such as Wikidata [32]
have to provide search access to potential users. The SPARQL
Protocol and RDF Query Language (recursive acronym) is
a standard approach to this regard. This query language
explicitly is designed to make use of the triple structure, where
the predicate typically is given by an ontological relation and
subject and object can either be abstract OWL concepts or
an instance of such. The strength of this approach is that via
boolean combination of such atomic queries, results can be
retrieved which are not explicitly present in the knowledge
base. This is especially true if an automatic reasoner has been
applied to infer “new” relations between the entities of the
knowledge base.

Interestingly, such technologies, which originated in the
context of the so called semantic web [33, 34] have had
huge impact on life sciences, e. g. cf. [27], but as of yet
seem to be almost unknown or rarely used in engineering.
For example, [35] is one of the very few attempts to apply
semantic technologies to the domain of control theory of which
the authors are aware of4.

D. Integration Concept: “Automatic Control Knowledge
Repository”

The aforementioned technologies and approaches do exist
and have been applied for years or even decades. However,
to the best of the authors’ knowledge, there does not exist
a combination of these components suitable for the needs of
the scientific community and in particular the requirements
of researchers in the field of automatic control and systems
theory. Thus, the purpose of this contribution is to propose
such a combination and to expose these ideas to critical
comments from the research community.

As mentioned in the introduction, we propose in particular
1) to establish a central repository in the sense of Sec. II-A,

which collects content-related software (e. g. control
theoretic algorithms), organizational software (the au-
tomated tests) and metadata in a formal structure,

3Abbreviation for Ressource Description Framework.
4See also [36] for “Methodnet”, a complementary approach by the authors

which has a different focus than the proposal from this paper but is designed
to explicitly benefit from interlinking data with ACKREP.

 58

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 1, NO. 1, JUNE 2021, pp. 56-67 

 

 
 



2) to establish a supportive web service for that repository,
providing CI functionality tailored to its structure and
to the needs of systems and control engineering, plus a
suite of software tools to simplify contributions to that
repository e. g. by allowing for local testing,

3) to establish an ontology to formalize control theoretic
knowledge in order to harmonize language use and
enable SPARQL-searches on the repository,

4) to establish a set of rules that distribute the decision
making about submitted contributions (merge requests)
and other maintenance work among the previous active
contributors.

We call this concept active knowledge repository to reflect
the fact that it is more than a passive store of information.
Due to the testing carried out by the web service, it is guar-
anteed that the contained software had worked under clearly
specified conditions on computational infrastructure that is
independent from the content contributor (and thus not prone
to undiscovered dependency issues). The term “knowledge
repository” distinguishes from the term “knowledge base”
because it suggests dynamic evolution by contributions from
multiple sources and from the mere “repository” because it
hints that it does not just contain source code but by the kind
and structure of this source code (and metadata), the repository
content can be regarded as a representation of domain specific
problem solving knowledge (which can be transferred to other
problems).

III. PROPOSED REPOSITORY STRUCTURE

As described above, the repository should contain instru-
mental as well as conceptual knowledge. The following sub-
sections detail both aspects.

A. Instrumental Knowledge Represented as Software + Meta-
data

To reproduce a result, it is necessary to reduce it to a binary
yes-no question. Our approach is based on the observation that
the typical (computational) result in control theory can be split
up into a precise description of the problem (or class of prob-
lems), e. g. computing an input trajectory for an equilibrium
transition of a state-space system, and a description of how
to solve these problems. This corresponds to the concept of a
unit test, where the problem description is the test case and
the solution description is the software to be tested. As a test
case can succeed or fail, a problem solution can either solve a
problem (i. e. calculate the expected result from the provided
data) or fail to do so. To achieve flexibility and modularity, the
repository structure requires a formal split of contributions into
independent (but linked) entities of different types, see Fig. 2.
The most important entities are ProblemSpecification
and ProblemSolution5.

Note that in this structure a ProblemSpecification is
also given by executable code (indicated by the gear wheel).

5Short forms: Problem and Solution. Other short forms are similarly
self-explaining.

Fig. 2. Relations between the various entities. All cardinalities are m-to-n
with one exception: Each ProblemSolution is associated with exactly
one EnvironmentSpecification. Note that entities of type Comment
can also reference entities of their own type. The gear wheel symbolizes
executable code associated with the entity, other (meta)data is marked by the
file icon.

The solution entity is expected to represent the concrete
application of zero or more MethodPackages, which for
example contain the code for solving boundary value problems
or adaptive grid refinements. Such methods might be complex
pieces of software, which are compatible with one or more
runtime EvironmentSpecifications.

Finally there are entity types for Documentation (with
obvious use) and Comments. The latter provides a formal
possibility for transparent long term communication, such as
improvement suggestions or criticism related to other entities.

In the repository, each entity is represented by a direc-
tory containing at least one file named metadata.yml,
which must specify some defined6 attributes in the widespread
and easy to edit YAML format. The most important of
these attributes is the entity key, which is required to
be a five character string of numbers and capital letters
and serves to uniquely identify every entity in the repos-
itory. While most attribute fields are generic to all entity
types, some are specific to one type such as the field
estimated_runtime for a ProblemSolution. Entities
that contain source code obviously need to include the re-
spective files in their entity directory and reference it in the
metadata, e. g. solution_file="solution.py" for the
type ProblemSolution.

While the type for each entity is specified in the metadata,
it is a convention to have a top level directory structure that
maps to the different types. Inside these top level directories,
arbitrary subdirectories can exist, but entities are not allowed
to be nested.

B. Conceptual Knowledge Represented as Ontology

While the entities from the previous subsection are suitable
to describe the precise details of problems and solutions, they

6For details see the README.md file of [37].

 59

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 1, NO. 1, JUNE 2021, pp. 56-67 

 

 
 



(alone) are not condign to represent their interrelations and
how they fit into “the big picture” of control theory7. To
this end, we propose to include a computational ontology in
the repository, which contains all terms relevant to properly
characterize the ACKREP entities. This so called Ontology of
Control Systems Engineering (OCSE) mainly consists of a tax-
onomy sorting concepts into a hierarchy of distinct generality.
E. g., a Linear_State_Space_System is a special case
of a State_Space_System which is a special case of an
ODE_System etc. In addition to these is_a-relations, OWL
allows for arbitrary further relation types. Thus it is possible to
represent, e. g., the fact that a Transfer_Function (spe-
cial kind of dynamical system model) can be represented by a
Rational_Function (special kind of scalar mathematical
mapping).

A major challenge in this regard is the proper formal repre-
sentation of mathematical knowledge. Obviously, a significant
conceptual coverage of mathematics is needed for control
theory, but on the other hand a too deep representation of math-
ematics inside OCSE would require an infeasible effort. While
there are several existing approaches of formal mathematical
knowledge representation (see [38, 39] and references therein),
many of which are focused on automated theorem proving,
unfortunately none of them seems suitable to provide the nec-
essary concepts for control theory. As a preliminary pragmatic
solution mathematical concepts are therefore covered in OCSE
only as needed with a rather flat relation structure.

The coupling between the ontology and the software-related
entities is achieved by using the concept names from the OCSE
(i. e. names of ontological classes) as tags in the metadata
files for each entity. Thus the OCSE provides a controlled
tag vocabulary and prevents linguistic ambiguity. But more
than a mere word list the ontology also encodes semantic
relationships between the concepts and allows for SPARQL
queries (see Section IV-D).

For the sake of understandability the OCSE is represented
as a YAML file in the repository, i. e. in the same format as
the defining metadata files of the instrumental entities. This is
motivated a) as we assume little to no prior knowledge of OWL
and b) to better track and review changes in version control.
To be compatible to established standards we also provide a
version in RDF-XML which is automatically generated from
the OCSE YAML source by means of [40].

Fig. 3 shows an excerpt of the OCSE taxonomy.

IV. GENERAL ARCHITECTURE AND PROCESS SCHEME
FOR CONTRIBUTION AND INFORMATION RETRIEVAL

A. Architecture Overview

So far, we only have a passive repository with a suggested
structure (in the following named ackrep_data). However,

7In the original approach [23] this task was referred to an additional entity
type ProblemClass. However, it turned out that representing the necessary
relations solely via the respective metadata.yml-files would either be very
limited or would require reinventing established technologies from knowledge
representation.

the main advantage of the proposed approach should be
that a contribution to the repo will only be merged if it is
consistent, i. e. obeys the formal structure, and all (old and
new) ProblemSolutions are able to solve the related
Problems. In other words: all tests must pass. To check
this, we propose a suitable interoperation between different
software components. This architecture is visualized in Fig. 4.

The basic component is a software that crawls through the
repository, checks the consistency of each entity, collects all
solutions and related problems, runs the individual test cases
and reports the results. In the current prototype implementation
this software is called ackrep_core. It is available with a
command line interface, which allows local testing on personal
IT infrastructure. However, the relevant test run, which decides
whether a contribution is acceptable, must take place on
independent infrastructure, i. e. on a server. To comfortably
interact with ackrep_core on that server, there is a web
interface (ackrep_web). To simplify the processing and in-
terconnection of the entities, the metadata from the repository
is loaded into a database. When a solution check is triggered
via the web service, ackrep_core creates an executable
script from a template. This script is then executed by a
component named code executor, which is configured
according to the relevant EnvironmentSpecification.
The script passes the ProblemSpecification object to
the ProblemSolution function. Then the script passes the
result into the evaluate_solution function, which finally
compares the numerical/symbolical values of the solution with
the expected ones and decides whether the test was passed or
failed. The result is displayed to the user via ackrep_web
along with optional graphical results that were created by the
solution, cf. Fig. 6.

Obviously, there must be a copy of the ackrep_data on
the server. However, the “canonical place to live” for this repo
should rather be a public repository host such as github.com,
which we chose for the prototype. Alternatives would be e. g.
gitlab.com, bitbucket.com or codeberg.org (non-profit). Such a
service provides features for browsing the repository history
and creating a personal clone, which can evolve into a fork,
i. e. a version of the repository that shares the history but after
a branching point differs from the official repo state, e. g. due
to additional commits. For such a fork (which gets its own
URL from the repo host), a potential contributor can then
file a merge request via ackrep_web, which triggers the
consistency and solution checking described above.

B. Basic Contribution Scheme – Constitutional Rules

The merge request described above only has to be triggered
by a potential contributor and the formal quality assurance
in the form of consistency and solution checking takes place
automatically. However, these formal conditions are only
necessary but not sufficient. The final decision whether a
contribution should be merged to the official (i. e. canonical)
ackrep_data should be made by humans based on rele-
vance of the contribution and its scientific and educational
value.

 60

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 1, NO. 1, JUNE 2021, pp. 56-67 

 

 
 



OCSE_Entity

is a is a

Dynamical_
Behavior

is a

Dynamical_
System

is a

Feedback-Law

is a

Signal_Type

is a

Task_Type

is a

Convergence

is a

Plant

is a

Linear_
Feedback_

Law

is a

Deterministic_
Signal

is a

Noise

is a

Trajectory_
Generation

is a

Closed_
Loop_
Control

is a

System_
Identification

is a

s a

Convergence_
To_

Equilibrium

is a

Convergence_
To_

Desired_
Trajectory

is a

PID_Controller

is a

PD_Controller

is a

PI_Controller

is a

P_Controller

is a

Linear_
State_

Feedback

is a

ting

is a

Undershooting

is a

Fig. 3. Section of the taxonomy (subclass hierarchy) of the Ontology of Control Systems Engineering (OCSE). Note that the depicted is_a-relation is only
one of several relations between the concepts. The inset in the lower part shows an unlabeled overview of the whole taxonomy graph with the visible section
highlighted.

The aim to establish peer-based decision making in poten-
tially controversial situations while minimizing both conflict
and bureaucratic overhead poses some social challenges, which
are tackled in the form of a set of rules called constitution. The
basic idea is that any decision, both regarding contributions
and the constitution itself, should be made consensually by the
group of active contributors (see below). For initial simplicity,
there is no other body of decision-making, but as this group
grows, it can and should (consensually) decide to establish a
more elaborated structure. To facilitate this idea, the proposed
initial constitution describes a scalable rejection-minimizing
consensus mechanism, see Constitution.md in [37].

From the viewpoint of the authors, rejection minimization
is important for the following reason: In contrast to rules
implemented in program code, which are applied to inanimate
and indifferent pieces of information (“data”), the subject of
the constitutional rules are human individuals with their own
interests and preferences. Thus, these rules are not followed
due to natural laws (as is the case for data processed by
software on a digital device) but due to free decision. If a
majority vote displeases group members, it is likely they leave
and will not contribute anymore.

 61

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 1, NO. 1, JUNE 2021, pp. 56-67 

 

 
 



Fig. 4. Schematic visualization of the proposed component architecture and
their interaction during the use case of a contribution (see Sec. IV-C). The
orange elements are associated directly with a merge request.

C. Basic Use Case 1: Making a Contribution

For the sake of understandability, the use case of contribut-
ing is described as a concrete example. We assume a) that there
is a set of distinct individuals {C1, . . . , Cn} who have already
contributed to the repository (“active contributors”) and b) a
prospective contributor P who has developed a method for
trajectory planning of nonlinear state-space systems and wants
to contribute this method to the ackrep_data repository. To
accomplish this, the following steps are required:

1) P creates a personal fork of ackrep_data and locally
installs the supporting software (ackrep_core).

2) P splits up their code into entities according to the
required data structure8, see Sec. III-A. This includes
the creation of appropriate metadata.yml files con-
taining suitable tags from the OCSE.

3) With the help of the ackrep command line tool, P tests
locally whether all consistency and solution checks pass
and, if necessary, fixes all reported formal issues.

4) If no issues are reported, P pushes the changes to their
personal fork.

5) P files a merge request9 via the ackrep.org web service.
6) The web service verifies that all tests pass.

8The main code will be a MethodPackage while
ProblemSpecification and ProblemSolution can easily be
created based on existing examples

9Often also called pull request, although merge request better reflects the
essence of the concept: the request to merge new content into the existing
repository.

7) C1 . . . Cn get notified about the merge request and ex-
press their opinion about accepting or rejecting the
request and optionally suggest improvements.

8) After optional review iterations, the (final) merge re-
quest is accepted or refused based on the constitutional
rules. If accepted, it is part of the official version
of ackrep_data and if P /∈ {C1, . . . , Cn} then P
becomes Cn+1 and n := n+ 1.

It is worth mentioning that the decision makers C1 . . . Cn,
although they could, are not expected to perform a careful
review of the code, which would clearly be too much effort
in some cases. However, they are expected to check that the
code is relevant to the scope of ackrep_data and does not
contain obvious errors. If a problem with a contribution later
arises, this could be documented e. g. via the Comment entity.

D. Basic Use Case 2: Information Retrieval

The actual goal of contributing knowledge to ACKREP
is to provide access to this knowledge. To this end the
ACKREP web service exposes a SPARQL-interface by which
queries in that language can be directed to the ontology –
or more precisely to the ontology engine which is currently
implemented using owlready [41]. Because there is a one-to-
one correspondence between ACKREP entities as described in
Section III-A and individuals in the ontology (i. e. instances of
ACKREP_Entity which is a subclass of owl:Thing) this
interface offers a convenient way to apply semantic search to
the ACKREP entities, cf. Fig. 5.

The main difference to ordinary text-based search is the
following:

• Controlled vocabulary: Because only search terms which
are present in the ontology (OCSE) apart from built-
in SPARQL constructs can be used, the problem of
linguistic ambiguity is prevented. E.g. the concepts of
“trajectory planning” and “open loop control” both refer
to essentially the same concept but this fact is completely

Fig. 5. Schematic visualization of the information retrieval via SPARQL
queries and the involved components of the acrep web service.

 62

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 1, NO. 1, JUNE 2021, pp. 56-67 

 

 
 



invisible on the syntactical level (on which text based
search operates).

• Subsumption: Due to the taxonomic is a-relation inherent
in the OCSE the knowledge about generalization is rep-
resented. If a query asks for State_Space_System
the result should contain entities with tagged with Lin-
ear State Space System as the latter is a subclass of the
former, although the more general tag is not explictly
present.

• Fine grain control of the results: in contrast to ordinary
search dialogues, a SPARQL interface offers many more
possibilities to formulate complex queries, e.g. by usage
of logical operators such as UNION or NOT IN.

V. RESULTS: CURRENT IMPLEMENTATION STATUS

The aim of the authors is to develop a practically work-
ing concept, therefore a prototype of the proposed software
ackrep_core and ackrep_web has been implemented
and is publicly available as Free Software (GPLv3). However,
not all of the described features are already implemented. For
example, currently there is only one default Environment,
which only supports Python code. Furthermore, the code
executor component in Fig. 4 is not yet realized as a separate
container as it should be for performance and security reasons
but instead as a plain process run by the web service. The same
holds true for the ontology engine (cf. Fig. 5): This ideally
also should be represented by a separate process. Nevertheless,
the current state of the code and the running instance at
https://testing.ackrep.org should be sufficient to illustrate the
proposed concept to a certain degree and to generate some
feedback.

Since the first launch of the prototype together with the
original conference paper [23] the number of entities has
increased from originally 9 to currently 47. Among them are
basic control tasks (from undergraduate level courses) such as
linear state feedback, more sophisticated (and less known10

control approaches (such as the design of a reduced Luen-
berger observer or trajectory tracking based on differential
flatness) as well as some recent research results of the authors
for trajectory planning of closed kinematic loops [42] and
numerical estimation of the region of attraction of equilibrium
points (see Fig. 6).

VI. DISCUSSION

A. Evaluation of compliance with FAIR principles

The initial proposal of the FAIR principles [21] specifies
each of the four goals by several criteria. In this section
we review these criteria (quoted text) and how our proposed
approach relates to them (unquoted text).

a) “To be Findable”:
• “F1. (meta)data are assigned a globally unique and per-

sistent identifier”
– Implemented via entity key and IRI of ontology.

10at least to an application focused audience

Fig. 6. Screenshot of ackrep_web. Currently displayed is the result page
of the check solution command for a region of attraction approximation
of the Van der Pol oscillator. The relevant metadata is shown along with the
calculation result.

• “F2. data are described with rich metadata (defined by
R1 below)”

– Providing a metadata.yml is required for every
entity to be recognized as such.

• “F3. metadata clearly and explicitly include the identifier
of the data it describes”

– Implicitly fulfilled due to the structure of the entities.
• “F4. (meta)data are registered or indexed in a searchable

resource”
– Implemented via the SPARQL interface.

b) “To be Accessible”:
• “A1. (meta)data are retrievable by their identifier using a

standardized communications protocol”
– Partially implemented: The whole repository includ-

ing data (code) and metadata is available via git
which could interpreted as standardized communica-
tion protocol. However, a direct access to individual
entities without cloning the whole repo would be
more compliant with this criterion.

• “A1.1 the protocol is open, free, and universally imple-
mentable”

– Implemented. git is Free and Open Source Software
(FOSS) and so is its protocol.

• “A1.2 the protocol allows for an authentication and au-
thorization procedure, where necessary”

– Implicitly ensured by the features of git.

 63

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 1, NO. 1, JUNE 2021, pp. 56-67 

 

 
 

https://testing.ackrep.org


• “A2. metadata are accessible, even when the data are no
longer available”

– Not applicable due to the tight coupling of metadata
and data. Both types of data have the same risk of
becoming unavailable. However, see also Paragraph c
in Section VI-B.

c) “To be Interoperable”:
• “I1. (meta)data use a formal, accessible, shared, and

broadly applicable language for knowledge representa-
tion.”

– Implemented due to the usage of Python11 (for data)
and YAML (for entity metadata and ontology). Note,
that the usage of YAML to represent an owl ontology
is not standard, but is likely to be more accessible
for the intended audience (assuming no familiarity
with OWL or associated tools) due to being human
readable plain text but much less redundant than the
established XML representations.

• “I2. (meta)data use vocabularies that follow FAIR prin-
ciples”

– The controlled vocabulary used in the context of
ACKREP is given by the Ontology of Control Sys-
tems Engineering (OCSE) – which itself is part of
the repo and thus is subject to the general orientation
towards these principles.

• “I3. (meta)data include qualified references to other
(meta)data”

– Not yet implemented. Unfortunately, the authors are
not aware of any collection of (meta)data relevant to
the scope of ACKREP. This is likely due to the rare
usage of semantic technologies in the field of control
systems engineering. However, both the metadata of
the instrumental entities as well as the OCSE allow
to add such references in the future.

d) “To be Reusable”:
• “R1. meta(data) are richly described with a plurality of

accurate and relevant attributes”
– Implemented via tagging with OCSE concepts.

• “R1.1. (meta)data are released with a clear and accessible
data usage” license

– Implemented via the requirement of a Free Software
license. The General Public License (GPLv3) is
default for all contributions, but contributions with
other licenses such as BSD are also admissible.

• “R1.2. (meta)data are associated with detailed prove-
nance”

– Implemented via attributes creator and
editor_list in the metadata of instrumental
entities. Furthermore, documenting the provenance
of contributions is an essential feature of a version
control system and thus built into ACKREP by
construction.

11or other programming languages in the future

• “R1.3. (meta)data meet domain-relevant community stan-
dards”

– Not applicable, as the authors are not aware of
existing domain-relevant community standards for
sharing (meta)data. However, this contribution aims
to conduce to the establishment of such standards.

Note that in the domain of control systems engineering –
and probably other scientific domains which also strongly
rely on computational results – the term “reusability”
implies “reproducibility” (of such results) . Therefore, we
want to point out that the automatic testing incorporated
in the ACKREP approach facilitates reproducibility and
thus reusability even more than required by the official
FAIR principles.

B. Critical Questions

It seems probable to the authors that the proposed approach
raises questions and maybe skepticism. In this section we try
to anticipate and answer some of them.

a) What is the added value to related publications?: As
stated in the introduction, earlier publications ceased either
with a description (and lamentation) of reproduction hurdles
or with an appeal to publish source code and to connect it with
CI services. While the latter doubtlessly fosters reproducibility,
this appeal is based on mere comprehension of the underlying
problem. Given typical resource constraints and incentive
structures in the research system, even strong intention for re-
producibility might be outweighed by the necessary additional
effort to transform the code into a “presentable” state and to
deploy CI. The proposed approach of the active knowledge
repository, however, might change this balance in favor of
code publication due to the following expected effects:

1) Basing own work on existing examples reduces neces-
sary effort and helps adjust the own ambition to coding
style and quality.

2) Linking to the own code with an
https://ackrep.org/<key>-URL proves
that published code works on independent infrastructure
(=̂ formal quality assurance), which might provide
some extra incentive.

3) Making the own results easily findable on a platform
dedicated to the own research field increases peer-related
visibility much more than just publishing code among
millions of unrelated projects on a public repository host
(which of course does not conflict with the proposed
approach). Increased visibility is expected to be a strong
extra incentive.

b) How does an ACKRep-publication relate to “classi-
cal publications”?: Publishing source code and metadata is
supposed to be a supplement to classical publications such
as scientific reports, conference or journal papers. However,
both publication types would benefit from linking each other:
the paper/pdf publication becomes much easier to reproduce
with linked (working) source code and the published source
code becomes easier to comprehend with the background

 64

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 1, NO. 1, JUNE 2021, pp. 56-67 

 

 
 



information from a peer reviewed scientific paper. Indirectly,
the proposed approach might also increase the content quality
of final publications because the respective peer reviewers will
be the first beneficiaries of low-barrier reproducibility and
thus are able to assess the submission more precisely and, if
necessary, point out weaknesses and possible improvements.

c) Is the proposed central platform not a single point
of failure or otherwise problematic?: Experience shows that
a limited (and often short) lifetime is attached to almost all
human creations. This holds even more for digital creations.
As the proposed concept does not create hard dependencies it
can be considered as expandable as useful12: Every contributor
is free (and encouraged to) publish the own contributions
elsewhere (cf. public repository host in Fig. 4). With the
features of distributed version control this redundancy is easily
manageable and by default every contributor has at least one
local and one public copy of the whole data under control.
Furthermore, the constitutional rules (see Sec. IV-B) of the
platform should prevent that centralization implies concentra-
tion of influence and the availability of all the data and all the
code under a Free Software License gives anybody the low-
effort possibility to clone/fork the whole project – which in
turn acts as a feedback in favor of finding compromises.

The most sensitive part would be the URLs hard-coded in
publications, which in the worst case might become unreach-
able. But on the other hand, this could happen with any other
web service as well, and those are typically not as simple to
replace, do not grant open access to all their content and do
not offer easy identification of contributions with unique entity
keys.

d) Does the proposed solution have scalability issues?:
In this paper we suggest to establish one repository and a
central web service (currently running on a single virtual
machine). This results in two obvious limitations when many
contributions are made: a) The repository might become
quite big, which complicates further contributions and other
interactions and b) the computational resources of the current
web server will not suffice if confronted with several requests
in parallel. However, many other platforms and projects show
that such problems are solvable. This contribution only aims
to propose the basic concept to raise feedback. If scalability
becomes an problem, then there necessarily is a group of
several contributors who can then also provide the resources
to solve that problem.

e) How are “older results” supposed to be included?:
The incentive structures discussed in question a) mainly apply
to recent results. However, it would also be desirable that
established control methods such as, e. g., Kalman filtering,
loop shaping or PID design are available as tested reference
implementations. This could be achieved by including ACK-
REP in educational projects: students could learn from existing
implementations (as supplement to reading the respective
theory) and then create own contributions or improve existing

12Even in the worst case scenario of a sudden irreversible shutdown after a
period of successful operation this would only destroy (some of) the benefits
it added before but not cause additional problems.

ones as merge requests. The potential global visibility of the
own work as well as constructive feedback during the merge
request is expected to be a significant motivation. In fact,
most of the entities currently present in ackrep_data were
created during or are at least related to student projects.

f) How can the correctness of the content be ensured
in the long term?: The proposed solution offers two layers
of validation: First, an automatic formal verification, i. e. a
test whether submitted code runs without errors and pro-
duces the asserted results. This is required before inclusion
into the repository. Additionally, content-related flaws such
as implementation bugs or conceptual errors can only be
detected by domain experts – as is the case for classical
publications. However, the Comment entity (cf. Fig. 2), which
by definition is associated with specific other entities, offers
an accountable and traceable communication channel that can
be used to precisely identify and document issues. In contrast,
for classical publications there is no predefined mechanism to
inform the audience about errors or caveats.

VII. CONCLUSION

In this contribution, we proposed a concept to increase
compliance with the FAIR principles for results in system and
control theory based on computational tools. To this end, we
first summarized the motivation for the principles and espe-
cially the reproducibility problem, which affects our research
discipline as many others. After that we gave a brief overview
on relevant existing technologies and how to combine them.
The core contributions of this paper consist in the description
of the repository structure, the overall architecture of the
proposed tool, the description of the ontology (OCSE) and
the process scheme for the basic use cases (along with the
constitutional rule set). To facilitate the further experimental
validation of the proposed concept, the prototype implemen-
tation was briefly outlined. Finally, we gave a comparison of
our suggested approach to the original FAIR principles and
some discussion of expected concerns.

The authors want to close with the normative claim that
reproducibility should be a key feature of scientific results and
thus the FAIR principles deserve more attention. Published
results should be as easy as possible to find, to access and
to reproduce by interested individuals or groups, e. g. peer
researchers, graduate students or business and industry. The
proposed approach of the active knowledge repository and
much more its current implementation status is not expected to
be the optimal solution or even close to that. But nevertheless
it might be a relevant step in an ongoing optimization process.

REFERENCES

[1] J. F. Claerbout and M. Karrenbach. “Electronic Docu-
ments Give Reproducible Research a New Meaning”.
In: SEG Technical Program Expanded Abstracts 1992.
Society of Exploration Geophysicists, 1992, pp. 601–
604.

 65

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 1, NO. 1, JUNE 2021, pp. 56-67 

 

 
 



[2] D. L. Donoho, A. Maleki, I. U. Rahman, M. Shahram,
and V. Stodden. “Reproducible Research in Computa-
tional Harmonic Analysis”. In: Computing in Science
Engineering Vol. 11 (2009), pp. 8–18.

[3] R. R. Downs, W. C. Lenhardt, E. Robinson, E. Davis,
and N. Weber. “Community Recommendations for Sus-
tainable Scientific Software”. In: Journal of Open Re-
search Software Vol. 3 (2015), e11.

[4] “Devil in the Details (Editorial)”. In: Nature Vol. 470
(2011), pp. 305–306.

[5] Z. Merali. “Computational Science: ...Error”. In: Nature
Vol. 467 (2010), pp. 775–777.

[6] A. Morin et al. “Shining Light into Black Boxes”. In:
Science Vol. 336 (2012), pp. 159–160.

[7] N. P. Rougier et al. “Sustainable Computational Sci-
ence: The ReScience Initiative”. In: PeerJ Computer
Science Vol. 3 (2017), e142.

[8] J. C. Molloy. “The Open Knowledge Foundation: Open
Data Means Better Science”. In: PLOS Biology Vol. 9
(2011), e1001195.

[9] O. J. Reichman, M. B. Jones, and M. P. Schildhauer.
“Challenges and Opportunities of Open Data in Ecol-
ogy”. In: Science Vol. 331 (2011), pp. 703–705.

[10] V. Gewin. “Data Sharing: An Open Mind on Open
Data”. In: Nature Vol. 529 (2016), pp. 117–119.

[11] G. Boulton, M. Rawlins, P. Vallance, and M. Walport.
“Science as a Public Enterprise: The Case for Open
Data”. In: The Lancet Vol. 377 (2011), pp. 1633–1635.

[12] B. Hanson, A. Sugden, and B. Alberts. “Making Data
Maximally Available”. In: Science Vol. 331 (2011),
pp. 649–649.

[13] V. Stodden. “Trust Your Science?: Open You Data and
Code”. In: AMSTAT news: the membership magazine of
the American Statistical Association (2011), pp. 21–22.

[14] D. C. Ince, L. Hatton, and J. Graham-Cumming. “The
Case for Open Computer Programs”. In: Nature Vol.
482 (2012), pp. 485–488.

[15] D. Bailey, J. Borwein, and V. Stodden. “Set the Default
to ”Open””. In: Notices of the Ams, Accepted March
(2013), p. 2013.

[16] S. M. Easterbrook. “Open Code for Open Science?” In:
Nature Geoscience Vol. 7 (11 2014), pp. 779–781.

[17] L. A. Barba. “Praxis of reproducible computational
science”. In: Computing in Science & Engineering Vol.
21.1 (2019), pp. 73–78.

[18] F. Chirigati, R. Rampin, D. Shasha, and J. Freire.
“ReproZip: Computational Reproducibility With Ease”.
In: Proceedings of the 2016 International Conference
on Management of Data. SIGMOD ’16. San Francisco,
California, USA: Association for Computing Machin-
ery, 2016, pp. 2085–2088.

[19] T. Crick, B. Hall, and S. Ishtiaq. “Reproducibility in
Research: Systems, Infrastructure, Culture”. In: Journal
of Open Research Software Vol. 5 (1 2017), p. 32.

[20] M. Krafczyk, A. Shi, A. Bhaskar, D. Marinov, and
V. Stodden. “Scientific Tests and Continuous Integration

Strategies to Enhance Reproducibility in the Scientific
Software Context”. In: Proceedings of the 2nd Interna-
tional Workshop on Practical Reproducible Evaluation
of Computer Systems. P-RECS ’19. Phoenix, AZ, USA:
Association for Computing Machinery, 2019, pp. 23–
28.

[21] M. D. Wilkinson et al. “The FAIR Guiding Principles
for scientific data management and stewardship”. In:
Scientific data Vol. 3.1 (2016), pp. 1–9.

[22] ACKRep Testing Instance. URL: http:// testing.ackrep.
org/.

[23] C. Knoll and R. Heedt. “Automatic Control Knowledge
Repository — A Computational Approach for Simpler
and More Robust Reproducibility of Results in Control
Theory”. In: Proc. of the 24th International Confer-
ence on System Theory, Control and Computing. IEEE.
Sinaia, 2020.

[24] R. C. Merkle. “Method of Providing Digital Signa-
tures”. U.S. pat. Leland Stanford Junior University.
1982.

[25] G. Fraser and J. M. Rojas. “Software Testing”. In:
Handbook of Software Engineering. Ed. by S. Cha,
R. N. Taylor, and K. Kang. Cham: Springer Interna-
tional Publishing, 2019.

[26] N. Guarino, D. Oberle, and S. Staab. “What is an on-
tology?” In: Handbook on ontologies. Springer Berlin,
2009, pp. 1–17.

[27] C. Dessimoz and N. Škunca, eds. The Gene Ontology
Handbook. Springer New York, 2017.

[28] M. K. Bergman. Knowledge Representation Prac-
tionary. Springer, 2018.

[29] M. Keet. An introduction to ontology engineering, v1.5.
College Publications, 2020.

[30] F. Baader, D. Calvanese, D. McGuinness, P. Patel-
Schneider, D. Nardi, et al. The description logic hand-
book: Theory, implementation and applications. Cam-
bridge university press, 2003.

[31] M. Krötzsch, M. Marx, A. Ozaki, and V. Thost. “At-
tributed description logics: Ontologies for knowledge
graphs”. In: International Semantic Web Conference.
Springer. 2017, pp. 418–435.

[32] D. Vrandečić and M. Krötzsch. “Wikidata: a free col-
laborative knowledgebase”. In: Communications of the
ACM Vol. 57.10 (2014), pp. 78–85.

[33] T. Berners-Lee, J. Hendler, and O. Lassila. “The se-
mantic web”. In: Scientific american Vol. 284.5 (2001),
pp. 34–43.

[34] A. Patel and S. Jain. “Present and future of semantic
web technologies: a research statement”. In: Interna-
tional Journal of Computers and Applications (2019),
pp. 1–10.

[35] C. Benavides, I. Garcı́a, H. Alaiz, and L. Quesada. “An
ontology-based approach to knowledge representation
for Computer-Aided Control System Design”. In: Data
& Knowledge Engineering Vol. 118 (2018), pp. 107–
125.

 66

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 1, NO. 1, JUNE 2021, pp. 56-67 

 

 
 

http://testing.ackrep.org/
http://testing.ackrep.org/


[36] R. Heedt, C. Knoll, and K. Röbenack. “Formal Seman-
tic Representation of Methods in Automatic Control”.
In: Tagungsband VDI Mechatroniktagung. (in German).
2021.

[37] C. Knoll and R. Heedt. ACKRep Data Repository on
GitHub. URL: https://github.com/cknoll/ackrep data.

[38] C. Lange. “Ontologies and languages for representing
mathematical knowledge on the semantic web”. In:
Semantic Web Vol. 4.2 (2013), pp. 119–158.

[39] M. Kohlhase, T. Koprucki, D. Müller, and K. Tabelow.
“Mathematical Models as Research Data via Flexifor-
mal Theory Graphs”. In: Intelligent Computer Math-
ematics. Ed. by H. Geuvers, M. England, O. Hasan,
F. Rabe, and O. Teschke. Cham: Springer International
Publishing, 2017, pp. 224–238.

[40] C. Knoll. yamlpyowl – a Python based YAML-to-OWL-
converter. URL: https://github.com/cknoll/yamlpyowl.

[41] J.-B. Lamy. “Owlready: Ontology-oriented program-
ming in Python with automatic classification and high
level constructs for biomedical ontologies”. In: Artificial
intelligence in medicine Vol. 80 (2017), pp. 11–28.

[42] C. Knoll, X. Jia, and R. Heedt. “Trajectory Planning
for Closed Kinematic Chains Applied to Cooperative
Motions in Health Care”. In: PAMM Vol. 20.1 (2021).

 67

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 1, NO. 1, JUNE 2021, pp. 56-67 

 

 
 

https://github.com/cknoll/ackrep_data
https://github.com/cknoll/yamlpyowl

	Introduction
	Existing Solutions and Integration Concept
	Collaboration via Distributed Version Control Systems
	Automated Tests and Continuous Integration Services
	Semantic Technologies: OWL-Ontologies and SPARQL-Queries
	Integration Concept: ``Automatic Control Knowledge Repository''

	Proposed Repository Structure
	Instrumental Knowledge Represented as Software + Metadata
	Conceptual Knowledge Represented as Ontology

	General Architecture and Process Scheme for Contribution and Information Retrieval
	Architecture Overview
	Basic Contribution Scheme – Constitutional Rules
	Basic Use Case 1: Making a Contribution
	Basic Use Case 2: Information Retrieval

	Results: Current Implementation Status
	Discussion
	Evaluation of compliance with FAIR principles
	Critical Questions

	Conclusion

