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Abstract—Since the very first paper of J. Bernoulli in 1728, a  As the title of this paper shows, this equation appears to
connection exists between initial boundary value problemdor pe associated to a partial differential equation of hypkcbo

hyperbolic Partial Differential Equations (PDE) in the plane type - the string equation. Even if the association seemto b
(with a single space coordinate accounting for wave propagmn)

and some associated Functional Equations (FE). From the pai mistaken in this paper, it sends neverth.ele_ss to thg sgdend e
of view of dynamics and control (to be specific, of dynamics mentary fact, less known, that propagation is associaténhto

for control) both type of equations generate dynamical and delay. In order to explain this, we shall discuss a speci cé
controlled dynamical systems. The functional equations ma propagation - théossless propagatioBy lossless propagation
be difference equations (in continuous time), delay-diffiential it is understood the phenomenon associated with long (in

(mostly of neutral type) or even integral/integro-differential. It is definit ¢ . l f hvsical sianais. |
possible to discuss dynamics and control either for PDE or FE & delinite sense) transmission lines for physical signails.

since both may be viewed as self contained mathematical olss. ~ €lectrical and electronic engineering there are consiiére

A more recent topic is control of systems displaying con- various applications circuit structures consisting of tipoles
servation laws. Conservation laws are described byonlinear  connected through LC transmission lines (With respecti® th
hyperbolic PDE belonging to the class “lossless” (consertige); g long list of references may be provided, starting with a

their dynamics and control theory is well served by the assdated . . . .
energy integral. It is however not without interest to disciss pioneering paper of [3] and going up to a quite recent book

association of some FE. Lossless implies usually distortitess of [4]). The lossless propagation occurs also for non-gtect

propagation hence one would expect here also lumped time signals as water, steam or gas flows and pressures. Wittctespe

delays. to this we may cite the pioneering (but almost forgotten)
The paper contains some illustrating applications from varous papers of [5], [6] on steam pipes for combined heat-eletyric

fields: nuclear reactors with circulating fuel, canal flows @ntrol, . . . .
overhead crane, drilling devices, without forgetting the tandard generation, the long list of papers dealing with waterhamme

classical example of the nonhomogeneous transmission lsér ~and many other. In order to illustrate these assertions hak s
distortionless and lossless propagation. Specific featuseof the consider one of the early benchmark problems, the nonlinear
control models are discussed in connection with the control circuit containing a tunnel diode and a lossless transorissi

approach wherever it applies. o _ the so called Nagumo-Shimura circuit (fig.1)
Index Terms—conservation laws, distortionless propagation,

time delays

I. INTRODUCTION AND BASICS m?‘
We shall start from two elementary facts. First, any eleatri *
or control engineer has dealt with mathematical models &sher Ro ) r
either a complex domain term like ™* with 7 > 0, s € C, or | — o c
a time domain term like.(t — 7), whereu was some signal, S
were present. Such models were calldde delayor time
lag systemsA more involved interest to such systems would Ls G
inevitably have sent to some reference about the underlying
equations of these models - thexjuations with deviating

argument A still more involved interest would have sent to ‘ ‘ A
the question concerning origins of these equations; istieng 0 !
enough, the first differential equation with deviating argnt, _ _ _ o
reported in [1], was published by Johann (Jean) Bernoulli in Fig. 1. Oscillator (Nagumo - Shimura circuit)

1728 [2] and reads as

y'(t) =yt —1) Q) This circuit is described by the equations
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) . are exactly the Riemann invariants of the problem. We may
01 ov ov 01

Li— = —=— — =——,0<A<1 consider now the standard version of the d’Alembert method
ot ox" Tot OA i.e. of integrating along the two families of charactedsti
E =v(0,t) + Roi(0,1) (2 a
— =+VIC (6)

dA

Worth mentioning that there is a family of increasing charac
Proceeding in “an engineering way” we may apply formallyeristics and one of decreasing; as (5) shows, the forwave wa

the Laplace transform to compute the solution of the bounshould be considered along the increasing characterigtide

ary value problem viewed as independent of the differentitle backward wave along the decreasing ones. If we perform

equation but being nevertheless controlled by it. After somhis integration we shall find

elementary but tedious formal manipulation we find the fol-

lowing time dependencies

d .
705 v(1,t) = —i(1,1) + ¥ (v(1,1))

u1(0,8) = uy (1, t 4+ VLC) , ua(1,t) = us(0,t 4+ VLC) (7)

v(t) ++/L/Ci(1,t) — pov(t — 2V LC)+ By denoting
+v/L/Ci(1,t — 2VLCO)) = (1 4 po) E(t — VLC) m(t) =ui(Lt) , m2(t) = ui(1,2) (8)

dv - (3) we associate to (2) the following system of equations with
COE +Y(v) =i(1,¢) delayed argument

po = (1 — Ron/C/L)(1 + Ro\/C/L)*

which is a differential equation coupled with a difference Cod—v +¢(v) = 1\/g(m(t) —n2(t = VvLC))
equation in continuous time. A similar approach of applying d¢ 2V i )
formally the Laplace transform and deducing a characterist n2(t) = —pom (t = VLC) + (1 + po) E(t)

equation accounting for time delays (deviating argumeras w

used in the pioneering papers [5]-[7] dealing with steanegip m(t) = =t = VLC) + 2u(t)

for water pipes a pioneering paper is [8] where the samhich is exactly (3) but associated in a rigorous way, sigrti

approach is applied. _ o from the solutions of (2); even the initial conditions may be
It is useful to continue the investigation of the abovassociated in this way. Moreover, the converse associiion
benchmark system by observing that the aggregate also possible. Using the representation formulae for the tw
o(t) + VI/Ci(1,t) = u(L,t) + V/L/Ci(1,t) waves
represents the so called progressive (forward) wave of the ur (A ) =m(t+ (1 - A)VLC) 10
system at the boundaryy = 1. Since both the voltage us(\ 1) = 1a(t + \WIC) (10)

u(A,t) and the currenti(\,¢t) are linear combinations of
the progressive (forward) and reflected (backward) waves\s¢ may construct the solutions of (2) starting from the
follows solutions of (9).

To end this introductory discussion we just mention that (7)

1 and (10) define what is usually known lassless propagatian
u(At) = §[U1()\a t) +u2(A t)] Since the two waves propagate from one boundary to the other
) (4) in finite time = v/ZC but without changing their waveform
i\ t) = 5\/C/L[u1(>\,t) — ug(A, )] (just with a pure - lumped - time delay) this propagation is
o ] also distortionless. In the following we shall discuss hibitse
it is useful to express (2) in terms of these waves aspects.
Ouy 1 Ouy Ous 1 Ous [I. LOSSLESS AND DISTORTIONLESS PROPAGATION
ot JLC OA ot /LC 0A A. We shall consider again the Nagumo-Shimura circuit but
with a lossy transmission line
(]. + R()\/ C/L)U1 (O,t) + (1 — R()\/ C/L)UQ(O,t) = (5)
= 2B(t) 5 wi(1,1) +ua(1,t) = 20(t) u i . D du
. X 6)\+L8t+R270’6)\+08t+Gu70
Cogr T¥(0) = gV LA 1) — (4. ) Roi(0,1) +u(0,8) = (1) , un(t) = v(?) (11)

It is obvious that the propagation (partial differential) do
equations of the two waves are decoupled; the two waves OOE +¥(v) =1i(1,1)
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Introducing the forward and backward waves as previously iand an additional damping is introduced in the second differ

using (4) we find ence equation. Adapting (10) to the new case, we have
5‘u1 1 aul 1
ot T /toon T B/EHG/Cut w (A1) = et + (1 - NVIO) .

uz(At) = 66)\7’]2(1f + \WLC)

1
+-(R/L—G/Cus =0
2 and it is easily seen that the progressive wave propagates

Ous 1 Ouy 1 forwards fromA = 0 to A = 1 being retarded and damped
Bt Vi on 5 (B/L=G/Cur+ along the propagation while the reflected wave propagates
backwards fromA = 1 to A = 0 being also retarded and
+1(R/L+ G/C)us =0 (12) damped. Since the basic waveformg-) are not modified
2 but just retarded during propagation, the propagationse al
distortionless.
(14 Ro/C/L)ur(0,1)+ B. The natural development of the distortionless propaga-
e _ tion is to consider the so called inhomogeneous media and
+(1 = Rov/ C/L)us(0,1) = 2E(1) transmission lines. The theory of the waveguides is theistmo
uy(1,t) + ug(1,1) = 20(t) straightforward application. The mathematical model of th
inhomogeneous transmission line is given by the spacengryi
dv 1 /C telegraph equations [9
o+ w) = 2/ 0 ) — w0, 1) araph equations 91
dt 2V L .
These equations are no longer decoupled unless the “match- _ov = r(\)i(\ 1) + g()\)@
ing” condition of Heaviside is met i.eRC = LG which oA ot (19)
“ ” H 8 8
destroys” the coupling terms _a_; — g(Nu(A 1) +C()\)8_1tj
dur + 1 dw +(R/Lyus =0 with the standard notations, the line having lendthHere
ot LC OA (13) I(A) > 0, ¢(\) > 0 for standard physical reasons. The
Oy 1 Ous distortionless definitiondp. cit) states that
— — ——+4+(R/L)us =0
ot JLC OA (B[ L)us

v(At) = f(A)o(t — (X)) (20)
wheref(-) is calledattenuatiorandr(-) is calledpropagation
_ delay while ¢(-) is the waveform. Two are here the remarks
_ o 0X _OA
ur(A,8) = e wi (A, 6) 5 ua(A,t) = ewa (A t) (14) to be made: i) only the progressive wave is considered i.e.
§=Ry\/C/L 7(A) > 0; ii) only the voltage wave is concerned in this
basic definition @p. cit). The first aspect means the absence
of the reflected wave; consequently the line is closed on an

We introduce the new “waves”

to obtain a lossless-like system

Jwy L Ow, o Owy 1 Owy _ impedanceZ (L) that equals the characteristic impedance of
ot VLC OA Tot VLC OA the line. Mathematically speaking, this is a boundary ctoli
at A = L. There exist also other cases of interest, for instance
(1+ RovC/L)wi(0,1) + (1 — Ron/C/L)w2(0,1) = (15) the time independent voltage/curent ratio i.e. Whéh, t) is
—2E(t) s e Pwi(1,1) + Pwn(1,£) = 20(t) given by (20) and
dv 1 [C. s i(A,t) = h(A)o(t — 7(N)) (21)
COE + () = 2 f[e wi(1,) — eMwa (1, 1) i.e. when the line is resistive. Our approach includes these
Denoting now cases in the general setting of the distortionless propgagat
Since (19) are exactly like (11), we introduce the Riemann
m(t) =wi(1,t) , m2(t) = w2(0,1) (16) Invariants by
we associate to (15) the system uF (A1) = v\ t) £a(N)i(\ 1) (22)
4 . or by the converse equalities
1
Coy +6(v) = 51/ e~ m(#) — Pma(t = VIO)]
dt 2V L 1. _
U(Aat) = _[u ()‘at) +u (Avw]
VIO 17) 2
n2(t) = —pom (t = VLC) + (1 + po) E(t) . (23)
nl(t) — _6—26n2(t _ \/ﬁ) + 26_61}@) Z()‘vl") - 20,()\) [u ()\,lf) u ()\,t)]
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With the choicex(\) = /I(A\)/c(X) which is similar to (14) where
the cross derivative terms are “destroyed” and the follgwin
equations are obtained

_Out
D)

ou~
O\

BA) = (=r(N)/a(A) +g(N)a(N)) x

1NeV) | A ! =
AN "5 X exp < / g(0)a(o)do + / (r(a)/a(a)da)
0 A
1 r(A) —a' (N L . , i '
3 a(N)g(\) + T ut (N )+ We perform now integration along the characteristics to find
+ — at
1 " ()\)_r()\)— "0 o wr(0,t) =w" (L, t+7) (29)
2 g a(N) Denoting n*(t) = wt(L,t) the following representation
(24) formula is obtained
ou~
VI -~ ’
wt(\t) =" (t+A \/l(u)C(u)du) (30)
1 r(A) +a’(N)
2 (a()‘)g()\) B a() (A1) obviously accounting for distortionless propagation o€ th
forward wave. For the backward wave we obtain, by integrat-
1

r(A) +a’ (A B ing along the decreasing characteristics but taking alsm in
(a()‘)go‘)Jr ( >a()\)( )> (A1) account (30)

It is now rather obvious that the off-diagonal terms cannot
be canceled by the same choice of the line coefficients. Thisyy™ (L, 1) = w™(0,¢ +7) +

explains the option in [9] for the distortionless propagati (32)
forwards: such choice requires decoupling of the equatfon o L n Ep—
ui (A, t) in (24). Therefore + /0 Blom™ | t+ 2/0 me(udu | do

a'(\) =r(\) —g(Na*(\) (25) Denotingn~(t) = w™(0,t + 7) the following representation

formula is obtained

which is a condition on line's parameters. Remark tihé is

a Riccati differential equationConsequently the equations of A
the waves become w(A\t)=n" (t +/ \/l(u)c(u)du> +
0
ou™ Out n
S = VI S + (Mgt 1) 5( / Viedp+ (32
ou~ ou—  r(A) _
+(r(N)/a(A) = gNa(N)ut (A1) and the propagation is clearly associated with the distosti

Having in mind (14) we introduce the new “waves” by

introduced by the integral term. To obtain distortionletthe
backward wave, it is necessary to hawgr) = 0 a.e. that is
a(N)g(A) = r(N)/a(X) If a(X) is replaced by its expression

A .
w0 1) = exp < / g(o)a(o)do) wr (1) 8. a(A) = VI(A)/e(A) we obtain
0
. gMVIA)/e(A) E r(A)Ve(A) /1) 3
u (A1) = ex —/ r(o aada)w_)\,t
( ) p( \ ( ( )/ ( ) ( ) g()\)lo\) _ T()\)C()\)
to obtain which is exactly the Heaviside condition. However this dend
tion is valid only for thosea(\) satisfying (25). This gives
owt TONER owt a’(A) = 0 hence the ratid/(\)/c(A) has to be piecewise
)N (A)e(V) ot constant on(0, L). Not only constant coefficients can ensure
- (27) " gistortionless propagation for both forward and backward
ow ow~
— - = VI - = BAw (A1) waves!
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IIl. THE MULTI-WAVE CASE. APPLICATION TO THE
CIRCULATING FUEL NUCLEAR REACTORS

periodic type. The PDE (partial differential equationsg ar
completely decoupled, the coupling taking place at thelleve

When several transmission lines (channels) are includeddhthe differential equation which is controlled by the age
the system, several couples of waves are present, leading/@'es taken from the PDE'’s but is itself controlling the PDE

the model of e.g. [10]

in a distributed way. Also all eigenvalues of()\)

=17

are equal and positive hence there existforward waves.

ou

L AN =BMNu, t>0,0<A<L  (34)

where v is a m-dimensional vector andd(\), B(\) are
m X m matrices. AlsoA is supposed diagonal, having distinct
diagonal elements, of whidhare strictly positive (correspond-
ing to the forward waves) anéh — k are strictly negative
(corresponding to the backward waves)BIf\) could be also
diagonal then propagation would be distortionless, otierw
it is not.

dt

m

+iz=; Biai/

Integration along the characteristics and computationhef t
integral of (37) - which is quite involved - gives the follavg
system of functional differential equations

m

(0= Bin(t)+

m

The structure described by (34) arises from a more genefal  + Z Bi

problem. Consider a system which is symmetric in the sense pf
Friedrichs which looks like (34) but witl (\) only symmetric
(but with distinct non-zero eigenvalues). Usually a nogsiar

change of function is considered to diagonalize this matrix

i=1

qi(t +h) = e "%

0

—h

0
L,

h
e ( d(N)p(n + A)dn> n(t + \)d\
- (38)
" ¢(—n)qi(t + n)dn

h
¢(t) + oy A eMip(N)n(t + N)dA

More specific, if we consider the system

LTSV e

5 a)\JrD()\)v:O,

(35)

let T(\) be a nonsingular matrix such that*(\)C'(\)T'())

is diagonal. We take(\, t) = T'(\)v(\, t) to find

ou
T()\)E

+CoM) (T’()\)u + T()\)%) +

+DNT(A\)u =0

from where the form (34) is obtained wittA(\)
T=YN)C(N)T(N) diagonal and

B() =T~ (M) (CWNT'(\) + DT (X))

It appears that distortionless could be achieved in vergiape
cases wherd&3()\) defined above would result also diagonal.

(36)

with a corresponding system of initial conditions. Obsehag
the equations for; contain a lumped time delay accounting
for distortionless propagation while the variabledisplays

a distributed delay due to the way it enters the PDE's.
The difference equations fog;(¢) show a system of FDE
(functional differential equations) of neutral type. Mover,

if the representation formula is used

ci(n,t) = " g(t + b —n)—

0
o
—h+n

it may be observed that the propagation is distortionless
according to the definition given in the previous section.

(39)
7 p(0)n(t + b+ 60 — n)do)

IV. TWO CONTROL PROBLEMS
We have selected here two stabilization problems for en-

There exist however situations when this diagonal strectugineering systems containing elastic rods. What makes the
is inherent to the basic equations. This, for instance, tse c difference is that in the first case lossless propagatioressemt
of the circulating fuel nuclear reactor: we deal here with #hile in the second the nonhomogeneous material properties

model of [11]-[13]

d m
En(t) = pn(t) + Z Bi(ci(t) —n(t)),
h =1
(t) = [ otneitn tidn. i =Tm
0
dc;  Oc;
act + 8?7 +oici = oip(n)n(t),
ci(O,t):ci(h,t), iil,m, tzt()
ci(nto) =¥ (n), n(te) =no, 0<n<h.

This model contains the delayed neutron equations account-

(37)

account for propagation with distortions.
A. The controlled flexible arm of unitary mass and length,
with the control at the boundary = 0 is described by [14]

2 2

%—%:0, 0<A<1,t>0

; , (40)
Yoo Ay

wherey(\, t) is the torsion angle and(¢) is the boundary
control, supposed to have the form

r(0) =~y 4000 = [ EGEO D]
0 (41)

ing for the hydrodynamic equations of the circulating fuel.
We gave here also the boundary conditions which are of

Jy

oA

0.0~ [ K Z 00

0
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At the same time the model for stabilizing the vibrationset point and, due to linearity, we take it identically O from
of a torsion beam by boundary control [15] uses the samew on. We continue by integrating along the charactesstic
equations, the same control law (41) (regardless an irtiegra adapting (7) and (8) we find

by parts) but applied at the boundaxy= 1

2 2

@_@:0, 0<A<1,t>0

ot2  O)N2

5 5 (42)
Yoo W

We shall discuss these two models - in fact a single one -

as follows. Introduce first the new functions

_ _%
to obtain the standard equations
o _ow 0w v
ot X’ ot O\ (44)
w(oat) = T(t) ) w(]-at) =0
and, after an integration by parts
1
T(t) = —kp {y(l,t) —/ (I+ EMN)w\ t)dA| —
0
—ko[(1+ k(0))u(0, ) — k(1)o(1, 1)) (45)

—k, / 1(k(>\) + K ()N, £)dA

0
We may now introduce the forward and backward waves

uF(\ 1) = v(\t) Fw(\t)

v\ 1) = 5l (A1) +ut (A1) (46)
w(A,t) = $[(u” (A ) — uT (A )]

to obtain the equations of the lossless propagation

out _8u+ ou~  Ou”
o o\ Ot oA
u™(0,8) —ut(0,t) =27(¢) , w (1,¢) —u™(t) =0

and the control re-written

(47)

7(t)

k(1.0 - 3 [ EN (-

—ut(\ 1)) d\]—

— 3k (14 £(0))(w™(0,) +u™(0,t))+
+%kvk(1>(ui(1at) + u+(17t>>7

(48)

— Lk, / () + KO (1) (A, £)dA

We left aside till now the termy(1,t) - the angle at the

ut(0,t) =ut(1,t+1), u (1,t) =u (0,t +1) (49)
and may define
nt(t) =u(1,t), n~(t) =u=(0,1)
(50)

qu()‘vt) :77+(t+ L=X), u= (M) =n"(t=A)

This allows association of the functional equations - deduc
by substituting (49), (50) in the boundary conditions of (47

() —ntE+1)=2r@), () =n"(t+1)

2r(0) = by [ (14 KOO (- %) — 7041 N~
0

—ky(1+£(0))(n~ (1) =™ (t + 1))+

+hok(1) (™ (t 4+ 1) + 0t (1)

kv/l(k(A) +E N (E—=A) Tt +1—X)dA

Introducing the translated functior (t) = n*(t + 1) we
shall obtain

sHt) = (=1 ==27(t) , < () =<¢T(t—-1)

27 (t) = k,,/lu FEO)C (E—1— ) —cF(t — A)dA—

—ku(L+£(0)) (™ (t = 1) —cH(1)+
k(1) (s (t) + st (t —1))—

1

i [ RO) K06 (6= 10+ 6 = X))
0

We may further eliminate—(¢) to obtain finally the following

integro-functional equation

cH(t)+arsT(t—1) + aos™(t —2) =

. (51)
- / [Bo(\)s™ (£ + A) + B1 (Vs (£ — 24+ A)JdA

This is a quite standard linear difference equation. Itbikta
may be studiedria the characteristic equation

0

1+ aje™® +age = / [Bo(\) + e~ 2B (N)]e**d\ (52)

—1
or by associating to (51) a Liapunov functional suggested by
the energy integral of (44)-(45).

B. The control model of an overhead crane with a flexible

control boundary - it might be considered as some dynamiaalble is given by [16]
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y — (a(s)ys)s =0,t>0,0<s< L v(o,t) == yi(o,t) , w(o,t) == (1 +v0)ys(o,t)

. 53 T m T Ty T

Xp = K(a(s)y(s, 1)) (L, 1) + u(t) -

thus obtaining
_ ~m+pL p

a(s) =g(s+ (m/p)) , K = ma(L) Mg YoT?v; = wy , wy = (1 4 70)vs
in fact the starting model ofo.cit) contained the boundary T20,(0,8) = w(0,) , v(1,t) = X, (59)
conditiony,(0,t) = 0, explained by the physical assumption )
that the acceleration of the load mass is negligible witpbees T%X, = Sow(1,t) + T?u(t)

to the gravitational acceleratio i.e. ::(0,¢)/g ~ 0, in poroe further the forward and backward waves as below
fact this is not rigorous and definitely cannot be ascerthine

for all ¢; the only valid argument is connected to singular

perturbations. For this reason we shall deal with the comaple v(o,t) = ut(o,t) +u (0,t)
model (53). B N
If the rated cable length variable = s/L is introduced, w(o,t) = Tv/70(1+v00)(u (0,t) —u"(0,1))
then, with a slight abuse of notation, the following model (60)
containing possible small parameters is obtained ut(o,t) = 1 v(o,t) — ! w(o,t)
2 T/ (1 + v00)
L pL pL
— Yt — 1+—0)yo )] =0,0<0<1,¢>0 1 1
g m m u (o,t) = = | v(o,t) + —F——=w(0,1)
I 2 T\/70(1 4 y00)
Eytt(o’ B =30(0.t), y(1,8) = X,(?) The following equations are then obtained
L . L L
ZX, = 21+ ) (1,6 + Zult) ot 1 Su+
g M M g — + ——V ({1 +y0)—
(54) ot ' T\ ot

A preliminary comment is useful: supposing we would like

to neglect non-uniformity of the cable parameters, thisidou _ L 70 (u™ —ut)
require the assumption that the cable mass is negligible wit 7'y /(1 + yo0)

respect to the carried mass ielL/m =~ 0. However, this

will destroy the entire distributed dynamics since (54) \gou A (1 + 00) —— u”
become ot T/ ot (61)
L = 1 . 7o (= —ut)
Yoo =0; Eytt(O,t)=yo(07ﬁ)7 y(1,t) = X, T\ /(1T +0)
(55) ) .
Lg, - %ya(l,ﬂ +Luw T(uy +uf)(0,) = /Ao (u™(0,8) — ut(0,1))
9 g .
(1, t(1,t) = X,

We shall then havey(o,t) = ¢1(t)o + ¢o(t) which is v (LD +utLY P
substituted in the boundary conditions. Therefore TX, = d0+/70 (1 +70)(u(1,) — ut(1,t)) + Tu(t)

It is clear thatunder no conditions can be made this system
distortionless We may however try to replace this system

L.
E%Jréf)o =X, 61 =X, — ¢o

I . m I (56) by an approximation which would be such. To find such an
EX[) = M(Xp — ¢o) + gu(t) approximation, we turn back to the basic equation
Its uncontrolled dynamics is given by the roots of the charac yu — (a(s)ys)s =0
teristic equation where a(-) is a sufficiently smooth function. With the new
variables
Ly <552+1ﬁ) =0 (57)
9 \9 M v(s,t) = ye(s,t) , w(s,t) = a(s)ys(s,1)

i.e. by two purely imaginary modes and a double zero moc{fﬁ
this is but well known. Instead of this approach, we start by
introducing new functions and by making some other notation vy = ws , wr = as)vs

e first order equations of the propagation are obtained
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The forward and backward waves are defined by from the lumped parameter case - see (57) - a double zero
_ - n root of the controlled configuration witla(¢) as input andX,,
v(s,t) = u”(s,8) +ut(s,1) as measurable control output. Since (57) has also a pair of of
w(s, t) = a(s)(u(s,t) — ut(s,t)) purely imaginary roots, we may check for purely imaginary
roots of (66) and find them to be of the fortnz, /Td where

and satisfy x, are the positive roots of
/ 1—0dp)x
* L O B tan © = 2o(1 = o)z 67
u +Va(s)ul = 4\/@(11 u™) Y000 + 22 (67)
a'(s) (62) The equation is well studied [18]: it has real roots of the
uy —a(s)u, = (u™ —ut) form kmx + 0 where {dx}« is a positive bounded sequence
4\/a(s) approaching 0 fok — oc.

Obviously the distortionless condition ig(s) = 0 a.e. Since  We have thus discovered an infinity of purely imaginary

in our caseu(s) = g(s+m/p), a’(s) = g # 0. The piecewise roots; this infinity of oscillating modes is well known in the

constant approximation is thus the only suitable. This reeatheory of the elastic rods; mathematically, its presencel=

approximation ofa(s) piecewise constantly in order that e.gexplained by the fact that the difference operator of (65 ha

the propagation time should remain constant its roots onR - the imaginary axis. Other details may be found
in [17].

N
l.
L Zli =L (63) V. DYNAMICS AND CONTROL FOR SYSTEMS OF
a;

1

/L dx i
0o va(A) T Va CONSERVATION LAWS

We shall not discuss here specific approximation problemsit js well known that the first applications in the field of
such as concatenation conditions and convergence bugjest tcontrol for systems with distributed parameters dealt with
N =1 and write down the associated system. In this simplegfainly with specific problems (e.g. pressure control in stea
case we find pipes, water hammer in hydraulics, as already mentioned
in previous sections); however a more contemporary trend

1
do 1 . . .
T /—%/ — =T\ — (64) consists in applying control theory to general structufest t
o VI+0 vi+tm may be considered as benchmark problems. Due to their broad

If T, = T'\/~0/(1 + 71) - the propagation time - is introduced@pplications, the systems of conservation laws which dsscr
and the cyclic variableX, is eliminated, we obtain a genuinevarious physical phenomena with a single space parameter
system of neutral type distribution are very suitable for such applications [1Bhe

systems of conservation laws are interesting also for their
d nonlinear character; when linearized they reduce to theequi
Tda(zﬁ(t) +y (t—Ta) ==yt (t) -y (t—Ta)) well propagation equations - see [20] or the previous sestio
q - and, therefore, a comparison to some known results is also
Tda(yf(t) +yT(t—Ta)) =0y~ (t) —y*(t - Ta))+  available. o _
We shall consider in this section a system of two conserva-
+Tqu(t) tion laws onR? (one space variable) which reads

Xp =y~ (t) +y*(t —Ta)

(65) Y + f(Y)z =0 (68)
where we denoted whereY : [0,00) x [0, L] — Q C R? is the vector of the two
dependent variables anfd: Q C R? — R? is theflux density
gt () = ut(0,1) , y~(t) = u~(1,1) Unlike the mostly studied cases [19], the solution is defined

by the initial conditions
v(o,t) = u(0,t) +ut(0,t)
Y(2,0) =Yo(x), 0<z <L (69)
w(o,t) = T/l + ) (0,t) +u'(0,1))

and by some boundary conditions of Dirichlet type while they

For u(t) = 0 the inherent stability of (65) has been studmgay nevertheless contain some control input variables
ied [17]. Its characteristic equation

(Tds + ’YO)(TdS - ’YO(SO)_ (66) g()(Y(Oﬂt)vu()(t)) =0 ’ gL(Y(Lﬂt)vuL(t)) =0 ) t>0
—2sTy __ (70)
—(Tas = 0)(Tas +y0d0)e™ " =0 The standard problem we are approaching reads as follows
and obviously has a zero root; if we take into account thatFor constant control actions;(t) =, , i = 0, L, a steady
the outputX,, is a cyclic variable, we rediscover a fact knowrstate solution is a constant solutidnsatisfying (68) and (70).
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Depending on the form of the boundary conditions this steadshereT*(¢) are the propagation times on the characteristics
state solution may be stable or unstable. Accordingly it mayhile F'(A) is a monotone mapping defined by

be stated thdoundary control problem that of defining the A

control inputsu;(t) from a feedback structure such that for F(A) = / / 9 dav (76)
any smooth enough initial condition in (69 the unique smooth 0 ao((a))

solution should converge to a desired steady solutiom,by

X Since there is a discussion whether it is better to consider
the controllers’ set points.

) | L .the hyperbolic systems directly wia the associated functional
A. Consider the first appllcatlop - the control of the flows IRquations obtained by integration along the charactesistie
open canals [21]-[23] By choosing the flow velockY(z,?) mention here thathe use of the functional equatiomives

and the cross section(z,?) (instead of the liquid level), the peayer results than the direct method. In [23] the existesfce
standard Saint Venant equations are expressed as CoM@IVahe following physically significant invariant sets was yea
laws. We shall deal here with the simplest case ofatiematic

level canalwhose geometric parameters are independent of
the coordinate: and whose bed is lying at the same constant_F(AO) <V(z,t) <F(4) , 0sz<L,t>0
elevationY;,. Under the circumstances the conservation Iaws0 < F(A(z,1)) < 2F(Ao)
are given by

(77)
, 0<z<L,t>0
This shows both limited flow reversals as well as some
g (A 9 AV limitations of the liquid level. It is not quite clear if thes
a1 + 97 U ioo =0 (71) conditions may ensur@e invariance of the Froude numbiee.
14 3VE+99(4) §r(A(z, 1), V(z,t)) < 1 provided§r(A(z,0),V(z,0)) < 1
whereh = 1(A) is the liquid level and) is the inverse of the thus ensuring sub-criticality of the flow; actually one caipé

monotonic mapping defining the cross section is a prismaffét initial conditions that are sufficiently far away frofmet
canal critical limit will generate sub-critical evolutions.

h B. We shall address now to a problem that has been con-
@(h) = A a(y)dy sidered much earlier (see [20] but also its references)hdn t
. ) ) o ) technology of combined heat electricity there are steare9ip
(o is the canal width corresponding to the liquid elevation g6 dynamics affect the stability of the control systeans f
To these equations we may add the boundary conditions whichy; . operating parameters. The traditional approach g pi

arise from the canal conditions; if we consider constant ﬂo}ﬂﬂlnamics started from the equations of the hydrodynamic flow
at z = 0 and constant level (area) at= L then
ow ow 1 Jp

AOOV(O0,6) = QoL AL =4 (72) a
Without reproducing the details, we give here an account — +p— +

ot ar TVl T
of the results in [23] . Introducing the Riemann invariants

- forward and backward waves - means diagonalizing of Where the flow characteristics (velocity mass density and
matrix whose real eigenvalues are steam pressurg) are also related by the polytropic equation

P/Poc = (p/Poo)” (79)
M=V +gA/op(A (73)
fovld) with the subscripto accounting for steady state values and
of which \* is always strictly positiveHyperbolicity of the x> 1 being the polytropic exponent.

system requires~ < 0 hence The standard approach supposed neglecting the steam fric-
tion termsw (9w /9dl) andw(dp/dl) assumed to be small and

(78)

Fe(A, V) = N < (74) then to linearize the remaining partial differential edoas.
VgA/op(A) Further, there were linearized the boundary condition ed t
wheregt(4, V) thus defined is the Froude number; conditioROssible po_nlinea_rity rem_ained the sector restricted adotu
(74) means that the flow iuvial (subcritical). characteristic. By introducing the rated (per cross sadi@a)

Integration along the characteristics will send to thedigh Mass flowg = pw and eliminating the pressuge using the
ing functional equations to be satisfied by the boundary wav@Clytropic equation (79) we obtain a system of conservation

yr (), y () laws
) =t (T () = um (0,1 8<p> a( ’ ) Y
y* (t)=u"(L,t) , y (0t,) =u"(0,t = + 5 =
A N o N ) 0t \o) NG /p+yoop”
(" E+T7@) +y- ENF T+ TH(E) —y™ (1) = Qo wherevo, = poo(peo) ™™ is the polytropic steady state con-
yt(t) —y~ (t+ T () = F(Ao) stant. The boundary conditions are defined by the controlled

(75) admission of the steam into the pipelat 0 and the steam
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consumption from the pipe dt = L; remark that they are and/or distortionless propagation these equations have de
analogous to those of the previous application ations of the arguments that are constants. Such quite known
models correspond to linear partial differential equatiarnth
- possible nonlinear boundary conditions. The most intargst
2 and significant fact is that these equations arise from the
(81) linearization of the equations of the conservation lawse Th
Here f(¢) - the admission cross section of the steam to tlwntrol of the nonlinear systems of conservation laws isafne
consumer acts as a disturbance; since the steam has tahieemost recent challenges in engineering. Here the apiproac
supplied at constant pressure, this pressure has to be ithdased on Liapunov quadratic functionals induced by the
measured output. Taking into account that the controllés adinearized models; it is felt however that the energy inakgr
using the control error, the controller equations might be @ombined with integration along the characteristics (Whin
follows several cases, as pointed out in [19], are straight linesldco
. ) produce new advancement. And, last but not least, the sedcall
P2+ UDC + ¢ =Yoo (p(0, )" — Poo model validatior(basic theory, invariant sets) may turn helpful
. (82)  for petter control issues.
1= —p(C+70(n = 10)) B. The present paper emerged from the ideas, models and
wheren,, - the steady state of the actuator - may be computedoblems contained in an invited plenary exposition at ttie 6
using the steady state equations of (80)-(80). Summarizang 2009 IEEE International Conference on Electrical Engineer
obtained the following boundary value problem for a systeing, Computing Science and Automatic Control (CCE 2009),

60,0 = 000) . o(L1) = V3 T8 (2,1

of conservation laws, as follows held in November 1013, 2009 in Toluca, Mexico. Its text
was not published in Conference Proceedings, but a revised
5 (P 9 ¢ shortened form was published in a book of contributions.[24]
il + = =0 Since then many developments were acknowledged on each
ot <¢>> ol <¢2/p+’yoop”> of the directions listed in this paper. Citing even impottan
f@) K1 references would at least double their list. The hopes go
#(0,8) = do(t) » 9(L,1) = V2 70 F (p(L,2)) 2 towards the interested readers. P

P2.¢ + YDl + ¢ = Yoo (p(0, 1)) — poo

7= —p(C+7(n = 1s0))
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