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Abstract—This paper focuses on distributed state estimation
for sensor network observing a discrete-time linear system. The
provided solution is based on a Distributed Moving Horizon
Estimation (DMHE) algorithm with consensus-based arrival cost
and a pre-estimating Luenberger observer in the formulation of
the local problem solved by each sensor. This leads to reduce
the computation load, while preserving the accuracy of the
estimation. Moreover, observability properties of local sensors
are used for tuning the weights related to consensus information
fusion built on an observability rank-based condition, in order
to improve the convergence of the estimation error. Results
obtained by Monte Carlo simulations are provided to compare
the performance with existing approaches, in terms of accuracy
of the estimations and computation time.

Index Terms—distributed state estimation, moving horizon
estimation, Luenberger observer, sensor network, linear systems.

I. INTRODUCTION

In recent decades, the interest on distributed state estimation
increased tremendously due to its variety of applications over
sensor networks such as target tracking [1]–[2], exploration
[3], monitoring [4], etc. The estimation algorithms used in
these applications are mainly formulated as centralized sensor
fusion architectures, where all the sensors transmit their local
measurements to a central unit which processes the provided
data to update the estimation [5]. In general, the centralized
schemes are not scalable, since with the increasing number of
sensors the complexity of the problem to solve also increases.
Furthermore, the central unit cannot efficiently communicate
with all sensors for large-scale sensor networks due to physical
constraints (e.g. communication delay, limited communication
bandwidth). Unlike centralized schemes [6], in distributed
approaches [7]–[9] each sensor computes a local estimation
using the information acquired only from locally connected
neighbours. This can improve robustness to sensor failure
exploiting redundancy [10] and also lower the communication
burden since data is transmitted only among local nodes in the
network.

The material in this paper was partially presented at the 24th International
Conference on System Theory, Control and Computing, Sinaia, Romania,
2020.

The continuous decreasing costs of sensors is making this
application realizable, even tough there are still open prob-
lems to face with. In fact, distributed algorithms need to
have particular properties in order to make them attractive
for the industrial community. Thus, in the context of large-
scale systems, the algorithms must be scalable to be able to
deal with large-scale networks, must have low computation
load (necessary when dealing with low-cost sensors with low
computation capabilities), must minimize the utilization of
communication resources, etc. In [11], the authors reviewed
several works about distributed state estimation over low-cost
sensors networks, pointing out their characteristics, advan-
tages, and challenging issues.

In recent years, Moving Horizon Estimation (MHE) tech-
niques and its distributed counterpart (DMHE) have been used
to successfully deal with large sensor networks [12]. The
first idea of MHE proposed in [13] consists in estimating the
current states by solving a least-square optimization problem
penalizing on one hand the deviation between the measure-
ments and the predicted outputs, and on the other hand the
distance from the estimated state and the a priori information
about the state. MHE is a practical strategy for constrained
state estimation and a lot of research has been devoted to
develop stability guarantees on the estimation error dynamics,
e.g. [14]–[16]. Although this approach is functional for control
engineers offering the freedom to tune the parameters of the
cost function, a strength and a weakness of this approach is
the use of an optimization problem. This problem has to be
solved within the sampling period; however, for large-scale
systems this issue becomes critical. There have been several
attempts in trying to reduce the computation demanding of
MHE. One idea is to add a pre-estimating observer in the
formulation. The authors of [15] proposed a MHE strategy
with a Luenberger observer that leads to good performance
especially for large estimation horizons. They also provided
an optimization problem to tune the parameters minimizing
the effects of measurement noise and model errors. In [15],
they generalized the formulation using a weight matrix for the
penalty function and adding states constraints. A MHE with
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pre-estimation has been proposed also for non-linear systems
[16]. The authors of [8] proposed a distributed algorithm for
linear systems with a stability proof under weak observability
conditions (exploiting a consensus-on-estimate and a consen-
sus weight term in the DMHE formulation). Extension of this
DMHE to a new formulation with pre-estimation has been
investigated in [17]. However, the computation time issue
becomes crucial, since usually the network is composed of
low-cost sensors.

In this paper we extend the DMHE algorithm with pre-
estimation presented in [17], based on the ideas of [8], [15].
A pre-estimating Luenberger observer is considered in the
formulation of the local problem to be solved by each sensor,
resulting in a significant reduction of the computation time.
The main contribution of this paper covers:

• reducing the computation time required for solving the
optimization problem;

• preserving the accuracy of the estimation errors, which
allows the use of this type of algorithms for time-sensitive
applications;

• better tuning the consensus weights associated to the
network topology via a new observability rank-based
weighted distributed algorithm which takes advantage of
the local available information.

The paper is structured as follows. Section II presents the
necessary theoretical background. Section III focuses on the
proposed Distributed Moving Horizon Estimation approach.
In Section IV a simulation example is proposed for perfor-
mance illustration and analysis, while Section V reports some
concluding remarks and future developments.

II. NOTATIONS AND DEFINITIONS

Consider the dynamics of the system described by the fol-
lowing discrete-time linear time invariant state-space equation:

xt+1 = Axt + wt, (1)

where xt ∈ X ⊆ Rn is the state and wt ∈ W ⊆ Rn is a zero
mean white noise with covariance matrix Q. The sets X and
W are assumed to be convex with the origin in their interior.
The initial state x0 is assumed to be unknown and modelled by
a random variable of mean µ and covariance matrix Π0. The
measurements are performed by M heterogeneous sensors:

yit = Cixt + vit, i = 1, . . . ,M, (2)

where vit ∈ Rpi is a zero mean white noise with covariance
matrix Ri. Notice that, the superscript (·)i indicates a variable
that refers to the sensor i.

The sensor network is described by a digraph G = (N , E),
where the nodes N = {1, 2, . . . ,M} represent the sensors and
the edge (j, i) ∈ E ⊆ N × N represents the communication
link from sensor j to sensor i. We assume that all the nodes
have a self-loop (i, i) ∈ E , ∀i ∈ N . The neighbourhood N i

of the sensor i is N i = {j ∈ N : (j, i) ∈ E}. We denote by
M i = card(N i) the number of nodes j ∈ N i.

Assuming that the topology of the sensor network is not
time-varying, then a constant stochastic matrix K ∈ RM×M

can be associated to the graph G such that the elements:

kij > 0 if (j, i) ∈ E , (3a)
kij = 0 otherwise, (3b)

M∑
j=1

kij = 1, ∀i = 1, . . . ,M. (3c)

Section III-B will present a method that determines the value
of each element kij , compatible with the graph G, exploiting
observability properties. The matrix K will be used to compute
the consensus terms in the DMHE algorithm described in
Section III.

In order to recognize local, regional and collective infor-
mation (as in [8]) we introduce a convenient notation. In
particular, for a considered sensor i, an information is said
local if it is related only to the node i. It is said regional
concerning sensor i if it is related to the nodes in N i.
Finally, an information is said collective when the whole
network is involved. Therefore, for the sake of clarity, we
distinguish these information using different notations for
local, regional and collective variables. Specifically, given a
variable z, then zi, z̄i and z represent local, regional and
collective data, respectively. For example, consider the sensor
i and its neighbourhood N i = {j1, . . . , jMi}, then its regional
measurements are:

ȳit = C̄ixt + v̄it, (4)

with the output vector ȳit = [(yj1t )⊤ . . . (y
jMi

t )⊤]⊤ ∈ Rp̄i

of dimension p̄i =
∑

i∈N i pi, the output matrix C̄i =
[(Cj1)⊤ . . . (CjMi )⊤]⊤ and the measurement noise vector
v̄it = [(vj1t )⊤ . . . (v

jMi

t )⊤]⊤. In addition, we denote by R̄i,
the covariance matrix related to the regional noise vector v̄it
of sensor i, i.e., R̄i = diag(Rj1 , . . . , RjMi ).

According to this terminology, three different observability
notions can be defined.

Definition 1. The system is locally observable by sensor i
if the pair (A,Ci) is observable. The system is regionally
observable by sensor i if the pair (A, C̄i) is observable. The
system is collective observable if the pair (A,C) is observable.
In the rest of the paper, by abuse of language, one will write
that sensor i is locally (respectively regionally) observable
when the system is locally (respectively regionally) observable
by sensor i.

III. PROPOSED DISTRIBUTED MOVING HORIZON
ESTIMATION WITH PRE-ESTIMATION

In this section, we extend the Distributed Moving Hori-
zon Estimation with pre-estimation (DMHEpre) presented in
[17]. The proposed technique relies, as in the classical MHE
paradigm [13], [14], on solving a constrained “least-square”
optimization problem at each time t that involves the initial
state at time t − N , propagated forward via the dynamic
model of the system (1), and the measurements performed by
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the considered sensors (2). A distributed setting also involves
data shared by other sensors in the network [8]. The pre-
estimation observer (introduced for centralized MHE by [15])
is used in the formulation of the proposed DMHE to help the
mitigation of the effect of model uncertainty in the a priori
estimation. Thus, the pre-estimation contributes to enhance
the estimation accuracy. This strategy will also reduce the
computation time required to solve the optimization problem,
because the number of optimization variables involved is lower
and does not depend on the horizon length N . Further details
are given in the next sections.
A. Local minimization problem

In this section we formulate the proposed observability
rank-based weighted DMHE technique with pre-estimation,
hereafter denoted by DMHEw−pre, in which each sensor
i ∈ N solves its own local MHE problem based on regional
measurements ȳit and some shared information among the
neighbours j ∈ N i. For a given estimation horizon length
N ⩾ 1, each node i ∈ N at time t determines the estimate
x̂i
t|t of the state xt by solving the following constrained

minimization problem with pre-estimation:

x̂i
t−N |t = arg min

x̂i
t−N

J i(t−N, t, x̂i
t−N , ˆ̄vi,Γi

t−N ) (5)

s.t. x̂i
k+1 = Ax̂i

k + Li ˆ̄vik, (6)
ˆ̄yik = C̄ix̂i

k + ˆ̄vik, (7)

x̂i
k ∈ X , (8)

∀k = t−N, . . . , t.

The Luenberger gain Li is computed such that Φi = A−LiC̄i

is Schur stable when the sensor i is regionally observable.
Otherwise, as extrema ratio, Li can be computed in order to
minimize the propagation of the error along the prediction
horizon by keeping the spectrum radius of Φi the lowest
possible.

A quadratic objective function J i is considered:

J i(·) = 1

2

t∑
k=t−N

∥∥ˆ̄vik∥∥2(R̄i)−1 + Γi
t−N (x̂i

t−N , ˆ̄xi
t−N |t−1), (9)

where the initial penalty function Γi
t−N (x̂i

t−N , ˆ̄xi
t−N |t−1)

in (9) defined as follows:

Γi
t−N (·) = 1

2

∥∥∥x̂i
t−N − ˆ̄xi

t−N |t−1

∥∥∥2
(Π̄i

t−N|t−1
)−1

, (10)

involves two consensus terms described below.
We denote by ˆ̄xi

t−N |t−1 the weighted average state estima-
tion computed by the neighbourhood N i as follows:

ˆ̄xi
t−N |t−1 =

∑
j∈N i

kij x̂
j
t−N |t−1, (11)

where x̂j
t−N |t−1 is the second estimated state in the sequence

computed at the previous time by sensor j. Notice that
the penalty function Γi

t−N includes a consensus-on-estimates
term, in the sense that it penalizes deviations of x̂i

t−N from
ˆ̄xi
t−N |t−1. It helps to improve the accuracy of the local

estimates and it is necessary to guarantee convergence of the
state estimates to the state of the observed system even if it
lacks of regional observability [8].

The positive definite matrix Π̄i
t−N |t−1 is computed as in [8].

For the sake of completeness, we recall here the procedure to
compute it by:

Π̄i
t−N |t−1 =

∑
j∈N i

M jk2ijΠ
j
t−N |t−1, (12)

where the update of Πi
t−N |t−1 is performed by the sensor i

on the basis of regionally available information. In particular,
the matrix Πi

t−N |t−1, with i ∈ N , is given by one iteration of
the difference Riccati equation associated to a Kalman filter
for the system:{

xt−N = Axt−N−1 + wt−N−1

z̄it−N = Ōi
Nxt−N + V̄ i

t−N

where V̄ i
t−N represents the measurements noise and Ōi

N

defines the i-th sensor regional observability matrix:

Ōi
N =

[
(C̄i)⊤ (C̄iA)⊤ · · · (C̄iAN−1)⊤

]⊤
. (13)

Then defining:

Ci
N =


0 0 · · · 0
C̄i 0 · · · 0
...

...
. . .

...
C̄iAN−2 C̄iAN−3 · · · C̄i

 ∈ Rp̄iN×n(N−1),

(14)

R̄i
N = diag(R̄i, . . . , R̄i) ∈ Rp̄iN×p̄iN , (15)

QN−1 = diag(Q, . . . , Q) ∈ Rn(N−1)×n(N−1), (16)

Cov[V̄ i
t ] = R̄∗i

N = R̄i
N + Ci

NQN−1(Ci
N )⊤, (17)

and setting the covariance of the estimate x̂i
t−N−1 as:

Π∗i
t−N−1|t−2 =

((
Π̄i

t−N−1|t−2

)−1

+ (C̄i)⊤(R̄i)−1C̄i

)−1

,

(18)
the resulting Riccati recursive equation is given by:

Πi
t−N |t−1 = AΠ∗i

t−N−1|t−2A
⊤ +Q−AΠ∗i

t−N−1|t−2

(
Ōi

N

)⊤
·
(
Ōi

NΠ∗i
t−N−1|t−2

(
Ōi

N

)⊤
+ R̄∗i

N

)−1

· Ōi
NΠ∗i

t−N−1|t−2A
⊤.

(19)

Since the communication network topology is assumed to
be time-invariant, these equations could be computed off-line.
However, once the matrices Πi

t−N |t−1 have been computed,
we perform a consensus weights update in order to compute
the matrices Π̄i

t−N |t−1 according to (12).

Remark 1. In the proposed DMHE formulation the sequence
of the input noise {wk}t−1

k=t−N are no longer considered
as optimization parameters, contrary to DMHE of [8]. This
allows to reduce the computation time required to solve the
optimization problem.
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B. Weights tuning
In [8], the authors proposed an algorithm to compute K, ac-

cording to (3) and compatible with G = (N , E), to ensure the
stability of their DMHE. This algorithm requires knowledge
about the global network topology and, thus, the consensus
weights have to be globally recomputed when the network
topology changes. In order to overcome this issue, we further
present a new observability rank-based weighted approach
built on only local information available to each sensors i ∈
N , thus representing an enhancement w.r.t. the algorithm in
[8]. The proposed technique relies on observability properties
associated to each sensor. With the intention to enhance the
convergence of the consensus terms, the proposed method
gives major importance to sensors that have better regional
observability properties. A description of this approach is
presented below.

Observability rank-based weights technique. Consider a
sensor i. Its regional observability matrix:

Ōi
n =

[
(C̄i)⊤ (C̄iA)⊤ · · · (C̄iAn−1)⊤

]⊤
(20)

is of full rank if and only if the the pair (A, C̄i) is completely
observable, i.e. rank(Ōi

n) = n. Otherwise, its rank is less than
n. For the sake of simplicity, we denote by ρiO = rank(Ōi

n).
This information could be used as reliability of sensor i when
choosing the weights, which according to (3) must be averaged
among the neighbours, resulting in:

kij =
ρjO∑

j∈N i ρ
j
O
, ∀j ∈ N i. (21)

It is worth noticing that each row of the matrix K concerns one
sensor, e.g., the i-th row can be computed by sensor i using
data coming from its neighbours j ∈ N i solely. Hence, it can
easily be recomputed online if the topology of the network
changes.

C. Network information exchange
It is worth highlighting the way each node exchanges the

information with its neighbours. To this end, we list here some
assumptions that play a major role:

• the network could be composed by heterogeneous sen-
sors;

• the sensors are time synchronized.
This implies that the matrices Ci in (2) can be different
for all i ∈ N . Furthermore, if we assume also that the
network topology is time-invariant, then the neighbourhood
N i is known a priori and it is not necessary to exchange the
information of the matrices Ci and Ri at each time. Moreover,
this allows one to compute off-line the Luenberger gains Li.

D. DMHE procedure
Finally, the procedure of the proposed distributed scheme is

described in Algorithm 1.
Notice that the steps 10, 16 and 19 in the procedure

regarding exchanging information could be rearranged to have
just one synchronization. However, for clarity reasons with
respect to calculation details, they have been described this
way.

Algorithm 1 DMHEw−pre procedure

1: Off-line: ∀i ∈ N
2: receive from the nodes j ∈ N i: Lj , Cj , Rj

3: compute the pre-observer gain Li

4: store the a priori initial estimation x̂i
0|0 = x̂0 = µ of

x0, where µ is given, and the covariance matrix Π0 of x0

5: Initialization: ∀i ∈ N , at the first time step t = 0
6: collect a first local measurement yi0
7: receive from the neighbourhood j ∈ N i their mea-

surements yj0
8: Online: ∀i ∈ N , ∀t > 0
9: collect the local measurement yit

10: receive from the neighbours j ∈ N i the collected data
in the step 9

11: if 1 ⩽ t ⩽ N then
12: set the horizon length N = t, the covariance

matrix Π̄i
t−N |t−1 = Π̄i

0|t−1 = Π0 and the a priori initial
estimation state x̂i

t−N |t−1 = x̂i
0|t−1

13: else
14: compute Πi

t−N |t−1 according to (17), (18) and
(19)

15: receive Πj
t−N |t−1 from the nodes j ∈ N i

16: compute Π̄i
t−N |t−1 according to (12)

17: solve the local optimization problem of DMHE, min-
imizing J i as in (9) and (10) subject to the constraints
(6)-(8)

18: store the solution x̂i
t−N |t and the corresponding esti-

mate x̂i
t|t

19: receive from the neighbours j ∈ N i their estimates
x̂j
t−N+1|t

IV. SIMULATION RESULTS

In this section, the effectiveness of the proposed DMHE
algorithm with pre-estimation is investigated. In order to eval-
uate its performance, the proposed technique is compared to
the centralized MHE of [14] as well as the DMHE algorithms
of [8] and [17]. To this end, we consider the system in [8],
recalled below:

xt+1 =


0.9962 0.1949 0 0
−0.1949 0.3819 0 0

0 0 0 1
0 0 −1.21 1.98

xt + wt, (22)

where xt =
[
x1,t x2,t x3,t x4,t

]⊤
is the state vector and

wt ∈ R4 is a zero-mean white noise with covariance matrix
Q = diag(0.0012, 0.038, 0.0012, 0.038). Notice that the
system is unstable since the eigenvalues of A are 0.9264,
0.4517, 0.99 ± 0.4795i and |0.99 ± 0.4795i| > 1. For this
example, one considers X = R4.

The initial values of the algorithms have been set as µ =[
0 0 0 0

]⊤
, Π0 = I4.
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To compare the results of all algorithms we use M = 9
sensors for the distributed algorithms. For the centralized
scheme we consider the following measurement equation:

yt =

[
1 0 0 0
0 0 1 0

]
xt + vt,

with Var(vt) = R = I2. The considered distributed approaches
are using the following measurement equations:

yit =
[
1 0 0 0

]
xt + vit if i = 1, 2, 6

yit =
[
0 0 1 0

]
xt + vit if i = 3, 4, 9

yit =
[
0 0 0 0

]
xt + vit if i = 5, 7, 8

where Var(vit) = Ri = 1, i = 1, . . . , 9. The nodes are
connected as reported by the graph in Fig. 1 and the tran-
sition matrix K is computed with the observability rank-
based weighted method (21). The different colors highlight
the regional observability properties of each sensor i, thus of
the pair (A, C̄i). In particular, the green nodes mean that the
pair (A, C̄i) is completely observable, the yellow nodes are at
least detectable, the orange nodes are not detectable and the
red node has no sensing information, i.e. ρiO = 0.

1 2 3

4

5678

9

Fig. 1: Sensor network.
To evaluate the performance of the proposed algorithm we

take into account two performance metrics both averaged over
the nodes in the network. The first metric is the Root Mean
Square Error (RMSE) computed as follows:

RMSEt =
1

M

M∑
i=1

∥∥∥xt − x̂i
t|t

∥∥∥ ,
where M = 9 for distributed schemes and M = 1 for the
centralized one. The second metric is the computation time τ
needed by each algorithm.

We consider two simulations cases with time duration tf =
50s.

Case 1. Setting the horizon length N = 4, one hundred
Monte Carlo trials have been performed with each component
of the initial state x0 uniformly distributed in [−100, 100].

In Fig. 2 it is noticeable that the proposed algorithm
DMHEw−pre is able to converge and also shows better perfor-
mance vs. the DMHE of [8] and [17], which are one above the
other because these last two have very similar RMSEs. This
is more evident in Fig. 3 which shows the sum of RMSEs in
the transient period and in the steady-state.

Regarding the second performance metric in Fig. 4, it is
clear that the algorithms with pre-estimation are less time
demanding than the DMHE of [8] and the centralized MHE.
In fact, the computation time τ is reduced in terms of per-
centage circa 27% w.r.t. the DMHE of [8] and 49% w.r.t. the

0 10 20 30 4 0

0

20

40

60

80

Fig. 2: Time behaviour of the trials-averaged RMSE for 100
Monte Carlo trials.
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(a) Transient period

0

5

10

15

20

25

30

35

40

45

(b) Steady-state

Fig. 3: Sum of RMSEs in the transient period (for t ∈
[1, . . . , 9]s) and in the steady-state (for t ∈ [10, . . . , 50]s).

centralized MHE. Notice that the computation time of DMHE
in [17] and the extended version proposed in this paper are the
same due to the fact that the difference of the extended version
(DMHEw−pre) concerns only consensus weights computation.

Case 2. To better evaluate the proposed algorithm, a second
simulation has been performed with the same parameters as the
first case except two crucial variables. First of all, a different
horizon length is used, i.e. N ∈ {2, 3, . . . , 10}.

The matrix K used in this simulation results in a convex
combination with the parameter ε ∈ {0, 0.1, . . . , 1} of the
matrices K̃ and K̂:

K = εK̃ + (1− ε)K̂ (23)

where K̃ is computed with the proposed observability rank-
based weighted method, while K̂ is computed as in [8].
Moreover, a set of 100 different initial states {x0,z}100z=0 has

0

50

100

150

200

250

Fig. 4: Sum of the trials-averaged computation times τ for 100
Monte Carlo trials.
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been uniformly generated from [−100, 100]. Therefore, this
case simulation is composed by 9900 trials as result of the
Cartesian product N × ε× {x0,z}.

300300

310

310
310

320

320
320

330

330
330 340

340
340

350

350

3600

0.2

0.4

0.6

0.8

1

300

320

340

360

2 104 86

Fig. 5: Sum of x0-averaged RMSEs of the proposed
DMHEw−pre with K varying as in (23).

Figure 5 shows the RMSEs of the DMHEw−pre with K as
in (23). The RMSE is averaged among the z = 1, . . . , 100
trials by changing x0,z , computed as follows:

RMSE(N,ε) =
1

100

100∑
z=1

tf∑
t=1

RMSEt,x0,z
,

which results in a function of the horizon length N and the
parameter ε. As we can see, along the N -axis the slope of the
level curves of the RMSE changes mildly, with a minimum
for N = {3, 4}. Along the ε-axis it is evident that the
minimum is at ε = 1, thus when K = K̃. This means that
Fig. 5 shows that the performance in terms of RMSE of the
proposed observability rank-based weighted method is better
than Algorithm 1 (then K̂) in [8].

2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

Fig. 6: x0-ε-averaged computation time τ .
Idem for this case simulation, the computation time is lower

for the two DHMEs with pre-estimation, thus also for the
proposed observability rank-based weighted method, as shown
in Fig. 6. This figure shows the computation time τ averaged
over the trials in which ε and x0 change, that results in τ
as function of N . The slope of this function is the same for
the two DMHEs with pre-estimation, and is lower than the
DMHE in [8] and the centralized MHE. Moreover, Fig. 6
also shows the limits representing the minimum and maximum
computation time of the DMHE algorithms. It can be noticed
that these limits are narrower and less deviating w.r.t. N for
the algorithms with pre-estimation. This clearly shows the
very promising performance of the proposed algorithm for

implementation on networks of sensors with low computation
capabilities.

V. CONCLUSION

In this paper, a distributed architecture based on Moving
Horizon Estimation (MHE) paradigm is proposed for state
estimation of discrete-time linear systems by sensor networks.
The main merits of the proposed approach can be summarized
as follows: 1) the computation time is considerably reduced by
means of the pre-estimation observer; 2) the accuracy of the
estimation errors is improved both in the transient period and
in the steady-state w.r.t. the one of the original formulation
[8], as result of choosing the consensus weight matrix K with
the presented rank-based weighted method; 3) moreover, this
method allows each sensor to determine its consensus weights
on the basis of only local provided information contrary
to Algorithm 1 in [8] that, instead, needs knowledge about
the global network topology. Thus it is suitable for a fully
distributed scheme and could be extended for time-varying
topology.

Simulation results have shown the effectiveness of the
proposed DMHE algorithm even in presence of weak regional
observability conditions induced by some sensors of the con-
sidered network.

Current work focuses on implementation of the proposed
algorithm on a real multi-robot system for distributed local-
ization.
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