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Abstract—Controllability and observability are important sys-
tem properties in control theory. These properties cannot be eas-
ily checked for general nonlinear systems. This paper addresses
the local and global observability as well as the decomposition
with respect to observability of polynomial dynamical systems
embedded in a higher-dimensional state-space. These criteria are
applied on some example system.

Index Terms—Nonlinear systems, observability, ideals, varieties

I. INTRODUCTION

In control theory the observability of a system is an im-
portant property. There exist well known criteria to decide
this property for linear systems, see [10], [12]. For nonlinear
systems the concept of observability has been introduced
in [11] based on the indistinguishability of states by means of
their output trajectory. In contrast to linear systems this indis-
tinguishability may occur only locally in some neighborhood
of a state, or only for a subset of states.

Currently, no observability criterion for a general nonlinear
state-space system is known. In [19], [20] an interval arith-
metics approach has been used, which investigates a compact
subset of the state-space. For polynomial dynamically systems
a sufficient criterion for locally observability, following a
different definition as used within this article, has been given
in [2]. A global criterion, also sufficient, was stated in [28],
and in [24], [25] using a quantifier elimination approach. Suf-
ficient and necessary observability criteria based on algebraic
geometry are found in [13]–[15]. The paper [3] formulates a
sufficient and necessary global algebraic criterion.

This article is based on the conference paper [7] and the
journal paper [8]. Based on the local observability criterion
derived therein an attempt to decompose systems with respect
to observability is made. Due to the considered system class
this is only possible if the system is at no point locally ob-
servable. While this algebraic approach can avoid unnecessary
singularities, the resulting (locally) observable subsystem will
possess not locally observable points that are inherent to the
original system. These points can nonetheless be computed
using the same local observability criterion.

This work was supported by Deutsche Forschungsgemeinschaft (DFG)
under the research grant RO2427/5-1.

This article is structures as follows: First, some mathe-
matical preliminaries regarding ordinary differential equations
and polynomial ideals as well as the observability concept
from [11] are recalled in Section II. On this basis a sufficient
and necessary criterion for global and local observability is
given in Section III. It follows a discussion of the not observ-
able case and the decomposition with respect to observability.
Section IV is dedicated to some example systems, on which
the criterion is applied. Finally, some conclusions are drawn
in Section V.

II. PRELIMINARIES

A. Differential Equations

Let M ⊆ Rn be a connected, real-analytic manifold
equal to the (real) zero set of the polynomials g1, . . . , gm
with gi ∈ R[x] = R[x1, . . . , xn]. On this manifold consider a
vector field f : M → TM and the corresponding differential
equation

ẋ = f(x), x(0) ∈ M (1a)

as well as the output map

y = h(x) (1b)

with an analytic function h : M → Rp. The vectorial compo-
nents of the fields f and h in the standard basis are considered
to be polynomials in the ring R[x], too. These constraints en-
sure that the solution of (1a) exists for every initial condition at
least locally by the Picard-Lindelöf theorem [1]. The flow φt(·)
maps each initial value to its solution x(t) at time t.

B. Lie Derivatives and Lie Series

For any real smooth scalar field h : M → R the Lie deriva-
tive of h along the vector field f is the directional deriva-
tive [17]

Lfh(x) =
d
dth(φt(x))

∣∣
t=0

= h′(x)f(x), (2)

where h′ denotes the gradient of h. Higher order Lie deriva-
tives can be defined recursively by

Lk+1
f h(x) = LfL

k
fh(x), L0

fh(x) = h(x). (3)

The definition (2) can also be applied for a vector-valued
function h : M → Rp, where h′ is then the Jacobian matrix
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of h. This generalization can be interpreted as component-wise
computed Lie derivative

Lfh(x) =

Lfh1(x)
...

Lfhp(x)

. (4)

This notation is quite common in nonlinear multivariable
control [16]. Note that the Lie derivative (4) of a vector-values
map must not be confused with the Lie derivative of vector
fields, defined in a different way [17], [22].

Using the Lie derivative, the output trajectory y(t) of (1)
can be expanded into a convergent Mac-Laurin series

y(t) =

∞∑
k=0

tk

k! L
k
fh(x(0)) (5)

called a Lie series [21].

C. Distinguishability and Observability
Two states x, z ∈ M are called indistinguishable on the

interval [0, T ] if

∀t ∈ [0, T ] : h(φt(x)) = h(φt(z)). (6)

These indistinguishable pairs are collected in the (symmetric)
set

I = {(x, z) ∈ M×M|h(φt(x)) = h(φt(z))}. (7)

A system of the form (1) is globally observable if each
state x ∈ M is only indistinguishable from itself, i. e., if I
equals

J =
{
(x, z) ∈ M2 |x = z

}
. (8)

Such a system is called locally observable at a point x0 ∈ M
according to [2], [26] if there exists an open neighbor-
hood Ux0

⊂ M of x0 such that

I ∩ U2
x0

=
{
(x, z) ∈ U2

x0
|x = z

}
= J ∩ U2

x0
. (9)

Note that this property is called weakly observable in [11],
whose authors define local observability differently. Finally,
the system is simply called locally observable if it is locally
observable at any point in M.

Until this point the indistinguishability is connected to equal
output trajectories. Since this trajectory is locally analytic,
the Lie series of such trajectories have equal coefficients.
Therefore, we introduce the observability map

q(x) =


h(x)

Lfh(x)
L2
fh(x)

...

 (10)

and write equivalently

I =
{
(x, z) ∈ M2 | q(x) = q(z)

}
. (11)

As the Lie derivative of a polynomial along a polynomial
vector field is a polynomial again, the set I is the zero set
of polynomials. Thus, I is a real algebraic variety and global
observability can be decided by means of algebraic geometry.
As can be seen later, the space of not locally observable points
is a variety, too.

D. Polynomial Ideals and their Varieties

A set of polynomials I ⊆ R[x] is called a polynomial ideal
over the commutative ring R[x], if I fulfills the conditions

1) 0 ∈ I
2) a, b ∈ I =⇒ a+ b ∈ I
3) a ∈ I, c ∈ R[x] =⇒ ca ∈ I .

Although those ideals contain, let alone the trivial ideal {0},
infinitely many polynomials, they are generated by a finite
number of polynomials by Hilbert’s basis theorem [6, p. 77]:
One writes

⟨g1, . . . , gs⟩ = {a1g1 + · · ·+ asgs | ak ∈ R[x]} (12)

for an ideal generated by {g1, . . . , gs}.
The common zero set of all polynomials in an ideal I is

called the variety of I . Herein, we are only interested in real
zeros. Thus, we introduce the real variety of I to be the set of
real points within the variety of I , denoted varR(I). For each
ideal there is a unique (real) variety. However, the converse is
not true. We assign to each real variety V an ideal Ideal(V )
containing all polynomials that vanish on V . The relation

I ⊆ Ideal
(
varR(I)

)
(13)

holds for any ideal I , although the equality holds not in
general. The ideal Ideal

(
varR(I)

)
= radR(I), referred as

the real radical1 of I , can be computed algebraically [5, p. 85]
and equals{

g
∣∣ g2m + a ∈ I for some m ∈ Z>0, a ∈

∑
R[x]2

}
, (14)

where
∑

R[x]2 denotes the cone of sums of squares of
polynomials in R[x]. If an ideal equals its real radical, the
ideal is called real.

A few operations of ideals and varieties are required in the
sequel: The ideal sum

I + J = {g | g ∈ I or g ∈ J} (15)

of I and J is an ideal that contains all polynomials contained
in I or J . Geometrically, this corresponds to the intersection
of varieties:

varR(I + J) = varR(I) ∩ varR(J). (16)

The intersection I ∩ J contains all polynomials that are both
contained in I and J :

I ∩ J = {g | g ∈ I and g ∈ J}, (17)

corresponding to the union of varieties:

varR(I ∩ J) = varR(I) ∪ varR(J). (18)

Every real variety can be uniquely written as a union of
irreducible varieties, i. e., varieties that cannot be written as a
nontrivial union of smaller varieties. The corresponding real
ideal can be written as an intersection of corresponding prime

1The notation R√I for the real radical of I is more common. The herein
used notation is borrowed from [4].
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ideals. The saturation I : J∞ of I with respect to J is the
ideal

I : J∞ = {g | ∃m ∈ Z≥0 : ghm ∈ I for all h ∈ J}. (19)

Geometrically the saturation is related to the difference set as
follows:

varR(I : J∞) = varR(I) \ varR(J), (20)

where V denotes the Zariski closure [6, p. 190] of the set V ,
the smallest variety that contains V .

E. Lie Derivatives of Ideals

For an ideal I ⊆ R[x] we define the Lie derivative of I
along a vector field f as the ideal

LfI = I + ⟨Lfg | g ∈ I⟩. (21)

Higher order Lie derivatives are again defined recursively by

Lk+1
f I = LfL

k
fI, L0

fI = I. (22)

These Lie derivatives form an ascending chain

I ⊆ LfI ⊆ L2
fI ⊆ · · · ⊆ LN

f I = LN+1
f I = · · · = L∞

f I,
(23)

which stabilizes as every ascending chain of ideals [6, p. 80].
The stabilized ideal in the chain of Lie derivatives will be
called the stabilized Lie derivative of I along f . Note, that the
stabilized Lie derivative can be defined without making use of
the ascending chain at all [8], [9], as the saturation ideal can
be defined without using a chain of ideal quotients [6, p. 202].

III. OBSERVABILITY CRITERIA

As noted before, the set I of indistinguishability state pairs
is a variety of a polynomial ideal. The properties of this variety
will be studied by means of the corresponding real ideal. This
will lead to algebraic observability criteria.

First, the system (1) is extended by a copy of its own:(
ẋ
ż

)
=F (x, z) :=

(
f(x)
f(z)

)
(24a)

H(x, z) := h(x)− h(z) (24b)

with the vector field F : M2 → TM2 and the (residuum)
output map H . The observability map

Q(x, z) =

L0
FH(x, z)

L1
FH(x, z)

...

 =

L0
fh(x)− L0

fh(z)

L1
fh(x)− L1

fh(z)
...

 (25)

of the extended system happens to be exactly the differ-
ence q(x)− q(z) of the original observability maps. With the
ideal

M = ⟨g1(x), g1(z), . . . , gm(x), gm(z)⟩ ⊆ R[x, z] (26)

that corresponds to the variety
{
(x, z) ∈ M2

}
and the ideal

H = ⟨H1, . . . ,Hp⟩ ⊆ R[x, z] (27)

generated by the vectorial components of the extended output
map H , the variety (11) equals the real variety of the ideal

I = Ideal(I) = radR(M+ L∞
F H). (28)

Note that the Lie derivative of all generators of M are must
be contained in M. Otherwise the vector field f in (1a) would
not map into the tangent space TM of M. Thus, M is already
closed under the Lie derivative.

For the observability test, this ideal I is compared with the
ideal

J = Ideal(J ) =

radR(⟨x1 − z1, . . . , xn − zn, g1(x), . . . , gm(x)⟩) ⊆ R[x, z]
(29)

with J from (8).

A. Global Observability

Using the notation from before, we are able to state the
following Theorem:

Theorem III.1. The system (1) is globally observable if and
only if I = J.

This follows directly from the one-to-one correspondence
between real ideals and real varieties and the definition of
global observability.

B. Local Observability

The local observability is a bit more subtle. In addition to
test local observability (at a particular point or for all points)
we will compute the set of all locally observable points, or,
more precisely, the set of points at that the system is not locally
observable.

Theorem III.2. With the notation from above the set of not
locally observable points for (1) is the (real) variety

N = varR(((I : J) + J) ∩ R[x]), (30)

where the elimination ideal is considered as an ideal in the
ring R[x].

Proof. First, note that N ⊆ M = varR(J ∩ R[x]), such that
only points in M need to be considered.

Assume system (1) is not locally observable at x0 ∈ M.
Then there is z ∈ Ux0

different from x0, but arbitrary
close, such that (x0, z) ∈ I. This implies that there ex-
ists an irreducible component C of the variety I that con-
tains the point (x0, z). This component must be different
from J as (x0, z) /∈ J . However, (x0, z) lies arbitrary close
to (x0, x0) ∈ J . Thus, (x0, x0) is also contained in C as each
variety is a closed set. This shows that the Zariski closure
of C \ J equals C again, and, as a consequence

(x0, x0) ∈ (I \ J ) ∩ J . (31)

The latter variety is precisely the variety of the
ideal (I : J) + J, since I is real. This shows that x0 ∈ N .

If on the other hand (1) is locally observable at x0 ∈ M,
all indistinguishable points in every neighborhood U2

x0
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of (x0, x0) ∈ M2 are also contained in J . Thus, the only
irreducible component of I within U2

x0
is J itself. As a

consequence,
(x0, x0) /∈ I \ J . (32)

Since (I \ J ) ∩ J contains only points of the form (z, z),
there is no point (x0, z) for any z contained in this variety.
So, x0 /∈ N .

C. The Observable Subsystem

If the variety N of not locally observable points from
Theorem III.2 is a subvariety of the state-space M, the
dimension of N is neccesary smaller the that of M. Thus,
nearly all points in the state-space are locally observable. If
one writes the variety I of indistinguishable pairs as a union

I = I1 ∪ · · · ∪ Is (33)

of irreducible varieties, only one of the irreducible compo-
nents can contain J , the variety of equal state pairs. This
component must be furthermore equal to J . If in contrast one
such component would strictly contain J , it would do so in
any neighborhood U2

x0
and (9) would fail. Since all compo-

nents Ii, i = 1, . . . , s that contain J are equal to J , such a
variety can occur only once in the irreducible decomposition.

This holds also for the locally (at every point) and globally
observable case.

From Theorem III.2 one obtains the set of points, where the
observability map is not locally invertible.

If in contrast N = M, i. e., the system is a no point locally
observable, the statement from Theorem III.2 is to some extend
unsatisfying. In this case there must be irreducible varieties in
the decomposition (33) that strictly contain J . Assume for
a moment that exactly one such component exists, say I1.
For any fixed x0 ∈ M only this variety contains all indistin-
guishable states (x, x0) in any neighborhood of (x0, x0). This
means that there is a positive dimensional not observable part.

Apart from this ambiguity there may be points in the state-
space where even the observable subsystem is not locally
observable, namely where the other components I2, . . . , Is
intersect with J . These points can be computed the same
way and with the same arguments as in Theorem III.2,
with I replaced by the corresponding ideal I2 ∩ · · · ∩ Is of
the corresponding minimal decomposition. By the previously
made assumption this variety is now strictly contained in M
and of smaller dimension.

Except for that points, the system can be locally decom-
posed into an observable subsystem and a not observable part.
This transformation is sketched in the sequel using the ideal
corresponding to the indistinguishable states, at least for the
observable part.

The observable subsystem can be obtained by integrating
the (involutive) codistribution Span{dq} spanned by the ob-
serability map [18, pp. 95], where

dq = ∂q
∂x1

dx1 + · · ·+ ∂q
∂xn

dxn. (34)

Since all components (or their multiples) of the
extended observability map are contained in I, we

have Span{dq} ⊆ dI = Span{dp | p ∈ I}. Note that the
latter distribution may be greater since it contains the
derivatives of the defining polynomials gi of the manifold M.
Furthermore, using the generators of the ideal may avoid
zeros that do not originate from observability properties, see
Subsection IV-A.

Using the ideal

I = ⟨p1(x, z), . . . , pk(x, z)⟩ (35)

one can substitute new variables

ξ1 = p1(x, x0), . . . , ξk = pk(x, x0) (36)

with any fixed x0. These new variables may not be indepen-
dent, not alone because of the constraints arising from the
embedding. Constraints for the new variables can be found by
computing the elimination ideal

Ξ = R[ξ]∩
⟨ξ1 − p1(x, x0), . . . , ξk − pk(x, x0), g1(x), . . . , gm(x)⟩ (37)

by eliminating the variables x. All polynomials in this ideal
must evaluate to zero for all ξ. An easy method to obtain
the transformed output map (1b) is to include the polyno-
mial h(x)− h(z) ∈ I in the generating set of I. Then one
gets y = ξi for some i ∈ {1, . . . , k}. Finally, the differential
equations for the new coordinates read

ξ̇i = Lfpi(x, x0) (38)

with the value of x taken from the inverse transform of (36),
which should always be possible. However, it is not known if
this leads to the form (1a) with polynomial components of the
transformed vector field in the variables ξ. Although starting
from some particular order all higher-order Lie derivatives of
the output map h(x) can be written as R[x]-linear combina-
tions of the lower-order ones, it is not guaranteed that these
can be written by sums and products of the lower-order Lie
derivatives itself.

It remains to show that the previously made assumption
that only one irreducible component of I can contain J . If
not, at least two different varieties would intersect and the
intersection contains J . Thus, all polynomials in I must have
a common zero with their derivative at equal points (x0, x0).
This implies that dq is identically zero and that the observable
subsystem is empty. In this case the two intersecting varieties
must be M×M and are equal, a contradiction to the decom-
position being irreducible.

This fact allows to carry out the computation of the observ-
able subsystem with the prime ideal I1, which is the only one
contained in J, instead of I.

IV. EXAMPLES

A. Academic Example 1

As a first example consider the system

ẋ = 0, x ∈ R
y = x3 (39)
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from [18, p. 99]. This system is clearly globally observable,
since the output map h(x) = x3 is injective. This will be
shown using the method described herein:

Here, any Lie derivative of the output map is iden-
tically zero. Thus, with the notation used herein, one
has H =

〈
x3 − z3

〉
= L∞

F H. This ideal is not real, which can
be shown as follows: We have (x− z)

(
x3 − z3

)
∈ L∞

F H. This
polynomial can be written as

(x− z)2
(
x2 + z2 − xz

)
= (x− z)2

((
1
2x− z

)2
+ 3

4x
2
)

=
(
(x− z)

(
1
2x− z

))2
+
(√

3
2 (x− z)x

)2

, (40)

which is a sum of squares. Thus, x(x− z) is contained
in radR(L∞

F H). By the same argument, z(x− z) is also con-
tained, and so is their difference (x− z)2. Because the latter
polynomial is a square, too, we arrive at x− z ∈ radR(L∞

F H).
Thus, we have

I = radR(L∞
F H) = ⟨x− z⟩ = J (41)

and the global observability follows.
This cannot be shown directly using the observation

space O = Span
{
x3

}
, as dO(x) = Span

{
3x2

}
is singular

at x = 0.

B. Academic Example 2

Consider the non-observable system

ẋ1 = x1

ẋ2 = x2

y = h(x) = x2
1 + x2

2 (42)

with M = R2. Here, H = L∞
F H =

〈
x2
1 + x2

2 − z21 − z22
〉
,

since the Lie derivative of the output map is a multiple of
the latter again. This ideal is already radical such that

I =
〈
x2
1 + x2

2 − z21 − z22
〉
⊊ J = ⟨x1 − z1, x2 − z2⟩. (43)

Thus, the system is not globally observable.
In order to test local observability we compute the ideal

quotient I : J = I. Consequently, the set N = R2 of not
locally observable points equals the whole state-space. This
indicates that a decomposition into an observable subsystem
and a not observable part is possible:

The ideal I is a principal prime ideal, i. e., it is generated
by a single polynomial and it cannot be written as a nontrivial
intersection. Thus, the observable part can be described by a
single new variable ξ1 = x2

1 + x2
2, which obeys the differential

equation

ξ̇1 = Lf

(
x2
1 + x2

2

)
= 2

(
x2
1 + x2

2

)
= 2ξ1. (44)

As dξ1 = 2x1dx1 + 2x2dx2, there must be another vari-
able ξ2 with dξ2 = −x2dx1 + x1dx2 in the annihilator of dξ1.
This differential equation is solved by ξ2 = arctan

(
x2

x1

)
,

which can be algebraically continued for all states ex-
cept (x1, x2) = (0, 0). Although this tranformation is not a
polynomial one, the corresponding differential equation takes
the simple form ξ̇2 = 0.

C. Academic Example 3
We consider the system

ẋ = f(x) =

−x2 + x1

(
1− x2

1 − x2
2

)
x1 + x2

(
1− x2

1 − x2
2

)
−x3

(
x2
1 + x2

2

)


y = h(x) = x2
1 + x2

2 + x2
3.

(45)

from [7], [20], [23] defined on the manifold M = R3 ∋ x.
The stabilized Lie derivative of the ideal

H = ⟨H⟩ =
〈
x2
1 + x2

2 + x2
3 − z21 − z22 − z23

〉
(46)

is easily computed:〈
x3 − z3, x

2
1 + x2

2 − z21 − z22
〉
∩〈

x3 + z3, x
2
1 + x2

2 − z21 − z22
〉
∩〈

z21 + z22 + z23 − 1, x2
1 + x2

2 + x2
3 − 1

〉
(47)

as the chain (23) already stabilizes after the second ideal.
Note that there is no algebraic constraint on the coordi-
nates such that M = ⟨0⟩, with the notation from above, and
thus, L∞

F H+M = L∞
F H. The real radical of the latter ideal

is found to equal

I = radR(L∞
F H) =

〈
x3 − z3, x

2
1 + x2

2 − z21 − z22
〉
∩〈

x3 + z3, x
2
1 + x2

2 − z21 − z22
〉

(48)

Thus, by Theorem III.1, the system is not globally observable.
We compute the set of not locally observable points using

Theorem III.2 as follows: The ideal quotient I : J yields the
same ideal I again. Thus, the hyperplane x = z is contained in
the variety varR(I), but also its neighborhood. Consequently,
the variety N of not locally observable points turns out to
be R3, the whole state-space.

Since the system is not observable in the whole state-space,
there exists a decomposition into an observable and a not
observable subsystem. In the decomposition (48) only the first
ideal in the intersection is contained in J. This means that
only the variety corresponding to this ideal contains all equal
pairs x = z of states. From the two generators new variables

ξ1 = x3

ξ2 = x2
1 + x2

2 (49)

are introduced. These obey the differential equations

ξ̇1 = Lfx3 = −x3

(
x2
1 + x2

2

)
= −ξ1ξ2

ξ̇2 = Lf

(
x2
1 + x2

2

)
=

(
x2
1 + x2

2

)(
1− x2

1 − x2
2

)
= ξ2

(
1− ξ2

)
(50)

and are algebraically independent, as〈
ξ1 − x3, ξ2 − x2

1 − x2
2

〉
∩ R[ξ1, ξ2] = ⟨0⟩. (51)

The corresponding output map simply becomes y = ξ21 + ξ2.
As in the example before, the annihilator of dξ1 = dx3

and dξ2 = 2x1dx1 + 2x2dx2 equals −x2dx1 + x1dx2. Thus,
the remaining variable ξ3 = arctan

(
x2

x1

)
is introduced, which

satisfies
ξ̇3 = Lf arctan

(
x2

x1

)
= 1. (52)

In this form the observability character becomes evident.
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θ

x1

x2

Figure 1. The pendulum with the coordinates used herein.

D. The Pendulum

Consider the movement of a rigid pendulum in a plane as
depicted in Figure 1. As coordinates we use the (redundant)
Cartesian coordinates (x1, x2) = (sin θ,− cos θ) on the unit
circle for the pendulums deflection, and the angular veloc-
ity x3 = θ̇, on the manifold M = S1 × R. Using furthermore
dimensionless quantities, the equations of motion read

ẋ = f(x) =

−x2x3

x1x3

−x1

 (53a)

0 = g(x) = x2
1 + x2

2 − 1. (53b)

For this system several output maps are considered.
First, consider the measurement of the angular veloc-

ity x3 = h(x). Using in addition a copy of that system we
compute the ideal L∞

F H starting with

H = ⟨x3 − z3⟩. (54)

Adding the Lie derivatives of the generators yields the chain
of ideals

H ⊂ ⟨x1 − z1, x3 − z3⟩ ⊂
⟨x1 − z1, x3 − z3, x2x3 − z2z3⟩ ⊂〈
x1 − z1, x3 − z3, x2x3 − z2z3,

x1x
2
3 − x1x2 − z1z

2
3 + z1z2

〉
= L∞

F H. (55)

In combination with

M =
〈
x2
1 + x2

2 − 1, z21 + z22 − 1
〉

(56)

one obtains the primary decomposition of the ideal

M+ L∞
F H = ⟨x1, x2 − 1, x3, z1, z2 + 1, z3⟩ ∩

⟨x1, x2 + 1, x3, z1, z2 − 1, z3⟩ ∩〈
x1 − z1, x2 − z2, x3 − z3, x

2
1 + x2

2 − 1
〉
,
(57)

which is real and thus equals I. The last ideal occurring in the
primary decomposition is precisely J, the ideal corresponding
to the variety (8) of equal points for each system copy. The re-
maining ideals correspond to irreducible varieties that contain
a single point, each. In such a point the two pendulums are in
different equilibrium positions, which cannot be distinguished,
namely one pointing up and the other one pointing down.

Nonetheless, as these two equilibria share no points with the
variety J of identical states, one computes N = ∅ ⊆ M for
the set of not locally observable points by Theorem III.2.
However, as I ̸= J, the system is not globally observable.

We discuss another output map h(x) = x2
3 − x2 corresdond-

ing to the tension force of the pendulum. In this case Lie
derivatives of the output map up to order four are required in
order to stabilize the chain. We omit the details and state the
stabilized ideal

M+ L∞
F H =

〈
x2
1 + x2

2 − 1, x1 − z1, x2 − z2, x3 − z3
〉

∩
〈
x2
1 + x2

2 − 1, x1 + z1, x2 − z2, x3 + z3
〉
,
(58)

which equals I since it is also real. Again, the system is
not globally observable with this output map. The first ideal
occuring in the intersection above is again J, the ideal of all
polynomials that vanish on equal state pairs. As the second
one is not contained in J one has

I : J =
〈
x2
1 + x2

2 − 1, x1 + z1, x2 − z2, x3 + z3
〉

(59)

and thus

(I : J) + J =
〈
x2
2 − 1, x1, z1, x2 − z2, x3, z3

〉
. (60)

Eliminating the auxillary variables z of the system copy leaves
one with the ideal 〈

x1, x
2
2 − 1, x3

〉
. (61)

The variety
N = {(0,−1, 0), (0, 1, 0)} (62)

of the latter ideal is the set of the equilibrium points, corre-
sponding to θ = kπ with k ∈ Z.

E. The Thomas’ cyclically symmetric attractor

The Thomas attractor [27] is a third order system

Ẋ1 = sin(X2)− bX1

Ẋ2 = sin(X3)− bX2

Ẋ3 = sin(X1)− bX3 (63)

that posesses chaotic behaviour, depending on the value of
the parameter b. A particulary interesting case is b = 0, for
which observability will be studied herein. Using the same
technique as before, this system can be embedded into the
six-dimensional euclidean space using the transformation

x1 = cosX1, x2 = sinX1

x3 = cosX2, x4 = sinX2

x5 = cosX3, x6 = sinX3. (64)

Consequently, the newly introduced redundant coordinates
must fulfill the constraints

g1(x) = x2
1 + x2

2 − 1 = 0

g2(x) = x2
3 + x2

4 − 1 = 0

g3(x) = x2
5 + x2

6 − 1 = 0 (65)
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and one has the ideal

M = ⟨g1(x), g2(x), g3(x), g1(z), g2(z), g3(z)⟩. (66)

The newly introduced coordinates follow the differential equa-
tions

ẋ = f(x) =


−x2x4

x1x4

−x4x6

x3x6

−x6x2

x5x2

. (67)

If we consider the output maps h1(x) = x1, h2(x) = x2,
i. e., measurement of a particular original state variable X1

(up to multiples of 2π), the stabilized Lie derivative
of H = ⟨x1 − z1, x2 − z2⟩ is to be computed. We omit in-
termediate steps and directly give the resulting ideal I, which
can be written as an intersection of 18 irreducible ideals, one
of which is J. Another ideal of these is

M+ ⟨x1 − z1, x2 − z2, x3 + z3, x4 − z4, x5 + z5, x6 + z6⟩.
(68)

The remaining 16 ideals can be written as

⟨x1 − z1, x2, z2, x3 ± 1, z3 ± 1, x4, z4, x5 ± 1, z5 ± 5, x6, z6⟩
(69)

with arbitrary combinations of the signs.
As such, the system is not globally observable. However,

since
(I : J) + J = ⟨1⟩ = R[x, z], (70)

the set of not locally observable points is empty such that one
has shown local observability (on the whole manifold).

V. CONCLUSION
A criterion to test global and local observability of a

polynomial dynamical system has been given. In addition, all
points in the state space at that the system fails to be locally
observable can be computed. Currently, this criterion can be
applied only to polynomial systems of the form (1). While
some nonlinear systems can be formulated in this form, some
fall not into this class. Therefore, it is desirable to extend
the system class. Some open questions remain regarding the
decomposition with respect to observability. In particular if
the observable part can be written in the same form as the
whole system and if there exist a method to handle the not
observable part algebraically.
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[17] J. M. Lee, Introduction to Smooth Manifolds, ser. Graduate Texts in
Mathematics. New York: Springer, 2006, vol. 218.

[18] H. Nijmeijer and A. J. van der Schaft, Nonlinear Dynamical Control
systems. New York: Springer-Verlag, 1990.

[19] T. Paradowski, B. Tibken, and R. Swiatlak, “An approach to determine
observability of nonlinear systems using interval analysis,” in Proc.
American Control Conference (ACC), Seattle, USA, May 2017, pp.
3932–3937.

[20] T. Paradowski, S. Lerch, M. Damaszek, R. Dehnert, and B. Tibken,
“Observability of uncertain nonlinear systems using interval analysis,”
Algorithms, vol. 13, no. 3, p. 66, 2020.
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