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Abstract—This paper is concerned with the online state estima-
tion of a class of one-dimensional semilinear partial differential
equation (PDE) systems considering piecewise measurements
over the spatial domain. In the context of infinite-dimensional
linear systems, it is well-known that the Kalman filter mini-
mizes the mean square estimation error. For semilinear infinite-
dimensional systems, the extended Kalman filter (EKF) is a
widely used extension relying on successive linearizations of
the estimation error dynamics. In this paper, we propose a
computationally tractable implementation of the EKF using a
sample-and-hold approach for which the optimal output injection
operator associated to the proposed estimator is computed at
each sampling time via the approximate solution of the infinite-
dimensional Riccati equation. The performance of the observer is
exemplified through numerical experiments which demonstrate
the efficiency of the proposed approach.

Index Terms—State estimation, Riccati equation, Process mon-
itoring, Biochemical systems

I. INTRODUCTION

Distributed biochemical reaction systems involve spatial and
temporal concentration, temperature, and possibly pressure,
profiles. Tubular reactors are the main example of such
systems [2]. Their state variables are described by partial
differential equations (PDEs) consisting of material, energy
and momentum balances that couple the effects of advection,
reaction, and diffusion along with initial and boundary con-
ditions. The time and space dependencies as well as certain
types of boundary conditions make the analysis of distributed
reaction systems complex [3].

For process monitoring and control, the knowledge of the
system states is of fundamental importance. However, there
exists a number of obstacles associated with the lack of reliable
sensors capable of providing on-line measurements of the state
variables along the whole spatial domain, and in this case,
the internal states have to be estimated from the measurement
of process inputs and outputs. State observers for distributed
parameter systems are usually based on a PDE model of the
system together with an additional output injection term to

This work was partially supported by CAPES and CNPq/Brazil under grants
88881.171441/2018-01 and 302690/2018-2/PQ, respectively.

improve the convergence of the observation error [4]. Several
types of observers or filters have been proposed for tubular
biochemical reactors, including moving horizon observers [5],
interval observers [6], matrix inequality-based observers [7],
dissipative observers [8], sliding mode observers [9], among
others.

For monitoring and control purposes, the observers are
numerically implemented with a computer, and there are
two main options for the discretization step, either at an
early stage, i.e., model discretization, or at a later stage,
i.e., state observer discretization [4]. In the last decades, the
state estimation of distributed-parameter systems based on the
late-lumping approach has reached important milestones such
as the modal design for linear and semi-linear systems [1],
[8], [10]. Nonetheless, there are still some important issues
concerning the design of state estimators that are feasible
for online implementation, in particular, for semi-linear PDE
systems with in-domain measurements. In this work, we are
interested in the optimal state estimation of a particular class of
distributed tubular reactor systems. Specifically, we investigate
the online implementation of the extended Kalman filter (EKF)
for a particular application example, e.g., a bioreactor system
used in wastewater treatment with Monod type kinetics which
belongs to the class of Sturm–Liouville systems (see [11] and
the references therein for a definition and their connection with
Riesz-spectral systems).

By exploiting spectrum properties of Sturm–Liouville op-
erators, we propose an EKF algorithm considering a sample-
and-hold approach in which the infinite-dimensional Riccati
equation is converted into a set of coupled algebraic equations
which are numerically solved at each sampling time.

The remainder of this paper is organized as follows.
Section II states the problem of interest. In particular, an
anaerobic digestion process described by a semilinear PDE
system is equivalently expressed in terms of a well-posed
abstract infinite-dimensional system. Section III presents the
EKF algorithm for the infinite dimensional system with the
output injection operator being determined from the solution
of the infinite-dimensional Riccati equation. Then, a sample-

 95

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 1, NO. 1, JUNE 2021, pp. 95-103 

Cite as: I. F. Yupanqui Tello, D. . Coutinho, and A. Vande Wouwer, “Extended Kalman Filter Design for Semilinear Distributed Parameter Systems with 

Application to Anaerobic Digestion”, Syst. Theor. Control Comput. J., vol. 1, no. 1, pp. 95–103, Jun. 2021. 
DOI: 10.52846/stccj.2021.1.1.18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



and-hold based approach is introduced to computationally
implement the EKF algorithm. In Section IV, the results
are illustrated through numerical simulations and Section V
provides some concluding remarks and points out possible
future research lines.

Notation. Throughout this work, the mathematical notation
is standard for infinite dimensional systems; see, e.g., [10].
Also, we denote the set of positive real numbers by R+, the
set of positive integer numbers by N+, the vector space of
nx-by-ny real matrices by Rnx×ny , Q > 0 denotes that Q
is a symmetric and positive definite matrix, δnm represents
the Kronecker delta function, ∂zx(z, t) and ∂2zx(z, t) are the
first and second partial derivatives of the function x(z, t), with
respect to z, respectively. L2(0, 1) denotes the space of square
Lebesgue integrable functions on the interval (0, 1), i.e.

L2(0, 1) =

{
x : (0, 1) → R :

(∫ 1

0

x2(z)dz

) 1
2

<∞

}
.

Unless otherwise indicated, ⟨x1, x2⟩ denotes the inner
product of x1 and x2, with x1, x2 ∈ L2(0, 1). The set
L(Rn,L2(0, 1)) includes bounded linear operators from Rn to
L2(0, 1) endowed with the induced norm. The adjoint operator
of the differential operator A with domain D(A) ⊂ L2(0, 1)
is denoted by A∗ with domain D(A∗) ⊂ L2(0, 1) and satisfies

⟨Ax1, x2⟩ = ⟨x1,A∗x2⟩

for all x1 ∈ D(A) and x2 ∈ D(A∗). The identity operator on
L2(0, 1) is denoted by I.

Zd(z) denotes the vector of monomial basis of degree d or
less, i.e,

Zd(z) =
[
1 z · · · zd−1 zd

]
.

Instrumental Results. The following definition and lemma will
be instrumental to derive the main results of this paper

Definition 1: [11] Consider the differential operator defined
as

A =
1

ρ(z)
(∂z(p(z)∂z)− q(z)I) ,

where the functions p(z), ρ(z) ∈ R+ are continuously differ-
entiable and q(z) ∈ R is continuous on [0, 1]. Furthermore,
the domain D(A) is given by

D(A) =
{
x ∈ L2(0, 1) : x, ∂zx are absolutely continuous,

∂2zx ∈ L2(0, 1) and α0∂zx(0) + β0x(0) = 0

∂zα1∂zx(1) + β1x(1) = 0
}
.

where (α0, β0) ̸= (0, 0) and (α1, β1) ̸= (0, 0). Then, −A is
said to be a Sturm-Liouville operator.

Lemma 1: [11] Any Sturm-Liouville operator is a Riesz-
spectral operator.

The immediate consequence of the above result is that the
properties of Riesz-spectral systems and operators [10] can be
used in the analysis and control of Sturm-Liouville systems,
in particular for convection-diffusion-reaction systems.

II. PROBLEM STATEMENT

Consider an anaerobic digestion process (used for wastew-
ater treatment) operated in a fixed bed reactor [12], with the
methanization occurring in the limiting step. Then, the process
kinetics can be characterized by the following reaction scheme

S → X + biogas

where S and X represent the substrate (organic matter to be
degraded) and the biomass, respectively. In a first approxi-
mation and in line with the physical evidence, it is assumed
that the biomass X varies very slowly in comparison to the
substrate S, and remains almost constant. Moreover it is also
assumed that X is spatially uniform.

It should be stressed that the latter assumptions are a priori
plausible. They were introduced here in order to simplify the
presentation of the proposed approach, but coupling effects
can be addressed similarly to the analysis that follows. Fur-
thermore, it is also assumed that the kinetics is described by
a Monod law. Under these conditions, the process dynamics
can be described (considering a dimensionless representation)
by the following semi-linear parabolic equation (i.e., a diffu-
sion–convection–reaction model):

∂tx(z, t) =
1

Pe
∂2zx(z, t)− ∂zx(z, t)− k0

x(z, t)

1 + x(z, t)
(1)

subject to the Danckwerts’ boundary conditions

1

Pe
∂zx(0, t)− x(0, t) = −xin(t)

∂zx(1, t) = 0 (2)

where Pe is the (dimensionless) Peclet number (i.e., Pe =
υl/Da), and x, xin, τ and z are dimensionless variables
defined as follows:

x =
S

Ssat
, xin =

Sin

Ssat
, t =

τυ

L
, z =

ζ

l
(3)

with υ, l, Da, S, Ssat, Sin, τ and ζ denoting the fluid
superficial velocity, the reactor length, the axial diffusion
coefficient, the substrate concentration, the saturation constant,
the inlet substrate concentration, the time and the spatial
variable, respectively. The parameter k0 is given by

k0 =
µmaxlX0

SsatυY
(4)

where X0, µmax and Y are the assumed constant biomass,
the maximum specific growth rate and the yield coefficient,
respectively.
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The adopted numerical values for the process parameters
are taken from Table I

TABLE I
PARAMETER VALUES.

Parameter Value Definition
PeT 5 Peclet number
k0 0.875 Damkohler number
xin 1 Inlet concentration

For numerical simulation purposes we generate the initial
condition profile of x(z, t) through the solution of a semidefi-
nite programming problem formulated in (5) that can be solved
by using conventional SOS (sum of squares) tools [17], i.e.,
the initial condition x(0, t) = x0(z) is selected as a positive
polynomial satisfying the boundary conditions and with one
upper bound selected by the physical conditioning of the
process. 

Find x0(z) = ZT
d (z)QZd(z), Q > 0

subject to

1
Pe
∂zx0(0)− x0(0) = −xin
∂zx0(1) = 0

x0(z) < 0.4.

(5)

We considered d = 3 in Problem (5) for generating an
initial condition profile, then the numerical simulation has
been implemented using a finite-difference discretization with
Nnod = 85 nodes. The time evolution profiles of x(z, t) is
shown in Figure 1. It was obtained by solving numerically
(1)-(2) considering the parameters given in Table I and initial
condition obtained through the solution of the semidefinite
programming problem in (5).

z
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Fig. 1. Time evolution of the spatial profile of x(z, t) at time instants t1 =
0, t2 = 0.25, t3 = 0.5, t4 = 1

In this paper, we are interested in estimating x(z, t) from
a finite number of measurements (spatially distributed). More

precisely, the state estimation problem of system (1)-(2) con-
sists in designing a dynamical observer on the basis of its
mathematical model and online measurements given by

y(t) =


∫ 1

0
c1(z)x(z, t)dz

...∫ 1

0
cny (z)x(z, t)dz

 ∈ Rny (6)

where cj(z) describes the distribution of the measurement at
the j-th position over the spatial domain [0, 1].

In practical applications, measurement sensors are only
placed at a finite number of discrete points (or partial ar-
eas) of the spatial domain. The definition of functionals
c1(z), . . . , cny

(z) will characterize the local measurements.
For instance, the following definition

cj(z) = 1[zj−εj ,zj+εj ]=

{
1

2εj
, zj−εj ≤ z ≤ zj+εj ,

0, elsewhere
(7)

produces ny zones of piecewise uniform sensing in the interval
[zj − εj , zj + εj ] as illustrated in Figure 2.

y_1 y_2 y_ny

...

z=0 z=l

zt_1 zt_2 zt_3z_1 z_2 z_nyzt_ny zt_ny+1

Fig. 2. Distributed piecewise measurements
.

Remark 1: Notice that cj(z), j = 1, ..., ny in the above
definition are elements in L2(0, 1) for fixed, small, positive
constants εj , j = 1, ..., ny . We remark that these piecewise
functions define bounded output operators on the Hilbert state
space. Usually, a pointwise sensor is modelled as a delta
distribution at the point j, i.e., δ(z − zj) replaces cj(z), and
they may yield unbounded operators within this approach: it
may maps out of the Hilbert state space L2(0, 1).

III. THE EXTENDED KALMAN FILTER

Consider the following equivalent state-space description of
the model (1)–(2), i.e., the abstract differential equation on the
Hilbert space L2(0, 1), (see, e.g., [10]):

ẋ(t) = Ax(t) +G r(x(t))

Bx(t) = u(t) (8)
y(t) = Cx(t)

where x(t) = x(·, t) ∈ L2(0, 1), u(t) = [−xin(t) 0]
T ∈

R2 and the operators A : D(A) → L2(0, 1), B : D(B) ⊂
D(A) → R2, C : D(C) ⊂ D(A) → Rny are defined as
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A =
1

Pe
∂2z − ∂z

D(A) = {x ∈ L2(0, 1) : x, ∂zx are absolutely continuous,

∂2zx ∈ L2(0, 1)
}

(9)

Bx =

[
1
Pe
∂zx(0)− x(0)

∂zx(1)

]
(10)

Cx =

 ⟨c1, x⟩
...〈

cny
, x

〉
 . (11)

and G = −k0 and r(x) =
x

1 + x
.

The system representation (8) has to be extended to consider
noisy measurements.

ẋ(t) = Ax(t) +G r(x(t))

Bx(t) = u(t)

y(t) = Cx(t) + v(t) (12)

where it is assumed that v(t) ∈ L2([0,∞),Rny ) is uncor-
related white Gaussian noise with zero mean and covariance
V > 0.

The fundamental result for infinite-dimensional linear sys-
tems is the well-known Kalman filter [13]. Based on system
representation (12), the following observer is defined

˙̂x(t) = Ax̂(t) +Gr (x̂(t)) + L(t) (ŷ(t)− y(t))

Bx̂(t) = u(t) (13)
ŷ(t) = Cx̂(t)

where L(t) : R+ → L(Rny ,L2(0, 1)) is a time-varying output
injection operator.

Now, let

e(t) = x(t)− x̂(t) (14)

be the state estimation error. Then, the estimation error dy-
namics is given by

ė(t) = (A+ L(t)C) e(t) +G (r(x(t))− r(x̂(t)))

+ L(t)v(t)
Be(t) = 0. (15)

Considering the linear approximation based on Taylor series
expansion around x̂(t), it follows that

r(x(t)) ∼= r(x̂(t)) + ∂xr(x̂(t))e(t) (16)

which results in the (extended) linearization of (15) with
respect to the reconstructed state trajectory x̂(t):

ė(t) =
(
Ã(t) + L(t)C

)
e(t) + L(t)v(t) (17)

where

Ã(t) = A+G ∂xr (x̂(t)) I
D(Ã) = D(A) ∩ ker

(
B
)
.

(18)

As in (linear) Kalman filter design [13], the output injection
gain is taken as

L(t) = −Π̂(t)C∗V −1 (19)

where Π̂(t) : R+ → L(L2(0, 1)) is a self adjoint non-negative
operator and the unique solution of the infinite-dimensional
differential Riccati equation

〈
˙̂
Π(t)ξ1, ξ2

〉
=

〈
Π̂(t)ξ1, Ã∗(t)ξ2

〉
+

〈
Ã∗(t)ξ1, Π̂(t)ξ2

〉
−

〈
CΠ̂(t)ξ1, V

−1CΠ̂(t)ξ2
〉

Π̂(0) = Π̂0 (20)

for all ξ1, ξ2 ∈ D(Ã∗), ∀t ≥ 0, with V ∈ Rny×ny being
symmetric and positive definite. We emphasize that the Riccati
equation (20) and the observer equation (13) in principle have
to be solved simultaneously because Ã(t) depend on x̂(t).

Assumption 1: r(·) : L2(0, 1) → L2(0, 1) has a locally
Lipschitz derivative, i.e., there exists a positive constant lr =
lr(ρ) where ρ > 0 such that

∥∂xr(x)− ∂xr(x̂)∥ = lr∥x− x̂∥. (21)

holds for all x, x̂ ∈ L2(0, 1) with ∥x∥, ∥x̂∥ ≤ ρ.

Assumption 2: There exists a bounded self adjoint non-
negative operator Π̂(t) : R+ → L(L2(0, 1)) that is the
unique solution of the infinite-dimensional differential Riccati
equation (20) and subject to the observer equation (13) for all
t > 0.

The above assumptions are crucial to ensure the well-
posedness of the extended Kalman filter design problem,
Although the second one is not straightforward to verify,
we know from the properties of the Riccati equation that
this assumption is satisfied if the pair (Ã(t), C) is uniformly
observable. Since the operator Ã(t) is generated in real
time, we cannot check their observability off line. Thus, in
order to obtain a convergent solution, a successive iteration
procedure which is incorporated into the extended Kalman
filter framework is considered below.

A. Sample and Hold Approach

The computation of the output injection operator L(t) of
the extended Kalman filter relies on the successive (extended)
linearization of the semilinear error dynamics as defined
in (15). As a result, the extended Kalman filter induces a
large computational effort due to continuously determining
the self-adjoint operator Π̂(t). Hence, in order to provide
an efficient computational procedure, a sample-and-hold ap-
proach is introduced in the sequel which will allow the online
implementation of the observer [14].
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In order to illustrate the principle, it is assumed that the
output y(t) is updated only at discrete time instants ti, i ∈ N,
with a constant sampling period given by

∆t = ti+1 − ti.

Next, let x̂(ti) = x̂(·, ti) and compute the output injection
gain L(ti) at sampling instant ti so that

L(t) = L(ti), ∀ t ∈ [ti, ti+1]

thus, the Riccati-equation (20) is made time-invariant in the
sampling intervals and has to be solved for

Ã(ti) = Ãi = A+G ∂xr (x̂(ti)) I
D(Ãi) = D(A) ∩ ker

(
B
) (22)

avoiding the differentiation with respect to time, that is:

〈
Π̂iξ1, Ã∗

i ξ2

〉
+
〈
Ã∗

i ξ1, Π̂iξ2

〉
−
〈
CΠ̂iξ1, V

−1CΠ̂iξ2

〉
= 0.

(23)

for all ξ1, ξ2 ∈ D(Ã∗
i ).

More specifically, notice that Ãi is a linear time invariant
operator for t ∈ [ti, ti+1] given by

Ãi =
1

Pe
∂2z − ∂z − ki(z)I (24)

with
ki(z) =

k0
(1 + x̂(z, ti))2

and

D(Ãi) = D(A) ∩ ker(B)

D(Ãi) = {x ∈ L2(0, 1) : x, ∂zx are absolutely continuous,

∂2zx ∈ L2(0, 1) and − 1

Pe
∂zx(0) + x(0) = 0

∂zx(1) = 0} . (25)

Figure 3 illustrates this principle setup. Furthermore, each
Ãi is the negative part of a Sturm-Liouville operator, since it
has the following form

Ãi =
1

ρ(z)
(∂z(p(z)∂z)− q(z)I) , (26)

with ρ, p and q being such that

ρ(z) = e−Pez > 0, p(z) =
1

Pe
ρ(z) > 0,

q(z) = −ki(z). (27)

Following the analysis in [11], [15], the spectrum of Ãi

consists only of real, countable and single eigenvalues. More
specifically, the spectrum σ(Ãi) of Ãi is given by

tt1 t2 t3

x

k1

k2

k3

r

Fig. 3. Schematic computational realization of the Sample and Hold approach.
Here ki(z) = ∂xr(x̂(z, ti)).

σ(Ãi) = {λi,n : n ≥ 1} (28)

and satisfies the eigenvalue problem

Ãi,nϕi,n = λi,nϕi,

Ã∗
i,nψi,n = λi,nψi,n

(29)

for all i ∈ N+ and n ≥ 1. Furthermore, the corresponding
set of eigenfunctions {ϕi,n : n ≥ 1} and {ψi,n : n ≥ 1} are
biorthogonal, i.e, ⟨ϕi,n, ψi,m⟩ = δnm and Ãi, Ã∗

i are both
Riesz-spectral operators [11] which can be represented as

Ãi,n =

∞∑
n=1

λi,n ⟨·, ψi,n⟩ϕn

Ã∗
i,n =

∞∑
n=1

λi,n ⟨·, ϕi,n⟩ψi,n.

(30)

B. The Eigenvalue Problem
The operator Ãi as defined in (24) is linear, but the

coefficient associated to the reaction term depends on z. As a
result, the calculation of its spectrum is a challenging issue.
In this paper, we will consider a numerical algorithm (based
on the differential transformation) to address the problem of
computing the spectrum of Ãi at each sampling time ti.
In particular, we will adopt the mathematical formulation
proposed in [16] which is summarized as follows.

Firstly, notice that an eigenvalue λi = λ(ti) and its
corresponding eigenvector ϕi(z) = ϕ(z, ti) should satisfy

1

Pe

d2ϕi
dz2

(z)− dϕi
dz

(z)− ki(z)ϕi(z) = λiϕi(z)

− 1

Pe

dϕi
dz

(0) + ϕi(0) = 0 (31)

dϕi
dz

(1) = 0.
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The differential transformation method, which is based on
the Taylor series expansion, considers that the differential
transformation ϕi(k) and its inverse ϕi(z) are defined as

ϕi(k) =
1

k!

dkϕi
dzk

(0), ϕi(z) =

∞∑
k=0

zkϕi(k). (32)

Taking the differential transformation applied to (31) yields

ϕi(k + 2) =
Pe

(k + 1)(k + 2)
(λiϕi(k)− (k + 1)ϕi(k + 1)

+

k∑
l=0

ki(l)ϕi(k − l)) (33)

ϕi(1) = Peϕi(0) (34)
∞∑
k=1

kϕi(k) = 0. (35)

Let ϕi(0) = 1, and calculate ϕi(1), ..., ϕi(N) from the
recursive formula (33), where N is decided by the convergence
of our design. Substituting ϕi(1), ..., ϕi(N) into (35) yields

f
(N)
i (λi) = 0 (36)

where f (N)
i (λi) is a N th degree polynomial of λi and whose

real roots are λi,1, ..., λi,N . Substituting λi,n into (33) yields
ϕi,n(0), ..., ϕi,n(N), ∀n = 1, ..., N . From (32), the corre-
sponding eigenvectors are given by

ϕi,n(z) =

N∑
k=0

zkϕi,n(k). (37)

After normalizing each ϕi,n(z), the sequence {ψi,n : n =
1, ..., N} is chosen such that it is biorthonormal with the
sequence {ϕi,n : n = 1, ..., N}, i.e, ⟨ϕi,n, ψi,m⟩ = δnm.

Remark 2: The methodology introduced above for the
computation of the spectrum of Ãi seems to be quite in-
volved. However, the algebraic computations can be easily
carried out in symbolic toolboxes of available mathematical
software which will allow the online implementation of the
state estimation algorithm to be described later in this section.

C. Solving the Riccati Equation

The Riccati Equation (20) for ξ1 = ψi,n and ξ2 = ψi,m,
with n,m ∈ N+, becomes

〈
Π̂ψi,n, Ã∗

iψi,m

〉
+
〈
Ã∗

iψi,n, Π̂ψi,m

〉
−
〈
CΠ̂ψi,n, V

−1CΠ̂ψi,m

〉
= 0.

(38)

If we assume that the solution has the truncated self-adjoint
form

Π̂i =

N∑
n,m

Π̂(i)
nm ⟨·, ϕi,m⟩ϕi,n (39)

with Π̂
(i)
nm ∈ R, ∀ i, n, m ∈ N+, the following holds

Π̂(i)
nm =

〈
ψi,n, Π̂iψi,m

〉
= Π̂(i)

mn =
〈
ψi,m, Π̂iψi,n

〉
. (40)

Using the fact that λi,n is an eigenvalue of the operator Ã∗
i

and ψi,n is the corresponding eigenvector, one has

〈
Π̂iψi,n, Ã∗

iψi,m

〉
=

〈
Π̂iψi,n, λi,mψi,m

〉
= λi,mΠ̂(i)

nm〈
Ã∗

iψi,n, Π̂iψi,m

〉
=

〈
λi,nψi,n, Π̂iψi,m

〉
= λi,nΠ̂

(i)
nm

(41)

Notice that the representation in matrix form of (39) is given
by

Π̂i =
[
ϕi,1 · · ·ϕi,N

] 
Π̂

(i)
11 · · · Π̂

(i)
1N

...
. . .

...
Π̂

(i)
N1 · · · Π̂

(i)
NN


︸ ︷︷ ︸

Pi

 ⟨·, ϕi,1⟩
...

⟨·, ϕi,N ⟩

 (42)

and considering the biorthogonal property of ϕi,n and ψi,n, it
is straightforward to show that

CΠ̂iψi,n =

 ⟨c1, ϕi,1⟩ · · · ⟨c1, ϕi,N ⟩
...

. . .
...

⟨cny
, ϕi,1⟩ · · · ⟨cny

, ϕi,N ⟩


︸ ︷︷ ︸

C

 Π̂1n

...
Π̂Nn

 (43)

likewise

CΠ̂iψi,m =

 ⟨c1, ϕi,1⟩ · · · ⟨c1, ϕi,N ⟩
...

. . .
...

⟨cny , ϕi,1⟩ · · · ⟨cny , ϕi,N ⟩


︸ ︷︷ ︸

C

 Π̂1m

...
Π̂Nm

 . (44)

Then, regarding the term on the second row of (38), we
obtain that

〈
CΠ̂iψi,n, V

−1CΠ̂iψi,m

〉
=

[
Π̂1m · · · Π̂Nm

]
CTV −1C

 Π̂1m

...
Π̂Nm


=

N∑
k,l

ClkΠ̂(i)
lmΠ̂

(i)
kn.

(45)

Hence, equation (38) becomes an infinite system of coupled
scalar equations given by

(λi,n + λi,m)Π̂(i)
nm −

N∑
k,l

ClkΠ̂(i)
lmΠ̂

(i)
kn = 0, (46)

where Clk is the element at the l-th row and k-column of
matrix CTV −1C.

 100

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 1, NO. 1, JUNE 2021, pp. 95-103 

 

 
 



Hence, the expression in (46) will provide 0.5N(N+1) cou-
pled algebraic equations that must be solved simultaneously
and may be represent in matrix form as

AiPi + PiA
T
i − PiC

TV −1CPi = 0 (47)

where

Ai =

λi,1 · · · 0
...

. . .
...

0 · · · λi,N

 . (48)

Once Pi whose entries are the parameters Π̂
(i)
mn of the self

adjoint operator Π̂i are computed by solving the algebraic
Riccati equation (47), the output injection operator can be
determined by means of

Liy = −Π̂iC∗V −1y

= −
N∑

n,m

Π̂(i)
nm

〈
C∗V −1y, ϕi,m

〉
ϕi,n

= −
N∑

n,m

Π̂(i)
nm

〈
y, V −1Cϕi,m

〉
ϕi,n

(49)

that may be represented in matrix form as

Liy =
[
ϕi,1 · · · ϕi,N

]
PiC

TV −1y (50)

D. State Estimation Algorithm
The above developments are summarized in the following

state estimation algorithm for a given sampling period ∆t.

EKF Algorithm:

1) function: Eigenspectrum(ti, ti+1) computes the sets
{λi,n : n = 1, ..., N}, {ϕi,t : n = 1, ..., N}, {ψi,n :
n = 1, ..., N} for t ∈ [ti, ti+1] according to section III-
B.

2) function: Riccati(ti, ti+1) solve (46) for t ∈ [ti, ti+1] .

3) function: Observer(ti, ti+1) solve (13) for t ∈ [ti, ti+1]
with x̂(t0) = x̂(ti).

4) input: x̂(t0), t0
5) initialize: i = 0

6) while i ≥ 0 do
a) ti = t0 + i∆t and ti+1 = ti +∆t;
b) Output measurement: yi = y(ti);
c) Ãi = A+G∂xr(x̂(ti))I
d) Determine the sets of eigenvalues and eigenfunctions

[{λi,n}, {ϕi,n}, {ψi,n}]=Eigenspectrum(ti, ti+1);
e) Determine the solution of Riccati equation:

Π̂i =Riccati(ti, ti+1);
f) Uptade the state estimation:
x̂(ti+1) =Observer(ti, ti+1);

g) i = i+ 1.

IV. NUMERICAL EXPERIMENTS

In this section, the performance of the proposed approach is
evaluated using numerical simulation of the bioreactor (1) with
the numerical values taken from Table I. It is also assumed that
the measured output is given by ny = 1 in-domain piecewise
measurement according to (6)-(7) with ε1 = 0.01 and dis-
turbed by white gaussian noise with power 4 dbW. The EKF is
implemented with an initial concentration profile x̂0(z) which
is selected as a positive polynomial satisfying the boundary
conditions and matching the initial state measurement so as to
obtain a faster convergence [4]. Thus x̂0(z) can be generated
via the solution of the following semidefinite programming
problem



Find x̂0(z) = ZT
d (z)Q̂Zd(z), Q̂ > 0

subject to

1
Pe
∂zx̂0(0)− x̂0(0) = −xin
∂zx̂0(1) = 0

x̂0(z1) = x0(z1)

x̂0(z) < 0.4.

(51)

Having selected d = 3, initially, the time evolution of the
estimation error norm concerning the proposed state estimation
scheme for different simulation scenarios were considered.

Figure 4 shows the convergence of the estimation error
norm for different sensor locations considering a sampling
period of ∆t = 0.02, a number of modes in the eigenvalue
approximation problem N = 10 and a variance V = 2.5 for
implementing the EKF algorithm and generating the numerical
simulation.

t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

‖e
(t
)‖

0

0.05

0.1

0.15

0.2

0.25

0.3
z1 = 0.25

z1 = 0.45

z1 = 0.65

z1 = 0.85

Fig. 4. Time evolution of the estimation error norm ∥e(t)∥ for z1 = 0.25,
z1 = 0.45, z1 = 0, 65, z1 = 0.85.

This figure indicates that the sensor location z1 = 0.25
provides the best performance with respect to other locations
considered in the numerical simulation. This fact is also

 101

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 1, NO. 1, JUNE 2021, pp. 95-103 

 

 
 



supported in the minimization of the initial estimation error
norm, since the initial state estimator profiles were selected to
coincide with the initial measurements at the corresponding
sensor locations. Moreover, this behaviour is also maintained
when varying the values of V and N . Figure 5 illustrates the
response for different values of V while fixing z1 = 0.25
and N = 10, and considering the proposed EKF algorithm. It
turns out that V = 10 becomes an appropriate estimation for
the measurement noise variance among those being tested.

t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

‖e
(t
)‖

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
V = 2.5

V = 5

V = 7

V = 10

Fig. 5. Time evolution of the estimation error norm ∥e(t)∥ for different levels
of noise V = 2.5, V = 5, V = 7, V = 10.

In Figure 6, the error response is evaluated for different
values of N considering z1 = 0.25 and V = 10. It can be
noticed by increasing the number of modes from N = 5 to
N = 15 (considered to approximate the infinite dimensional-
Riccati equation) that a similar performance is obtained.
Hence, we consider N = 10 as an appropriate selection for
the observer implementation.

t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0
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0.015
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0.025

0.03

0.035

0.04

0.045
N = 5

N = 10

N = 15

Fig. 6. Time evolution of the estimation error norm ∥e(t)∥ for N = 5,
N = 10, N = 15. .

Then, Figure 7 shows the profile evolution of x(z, t) (red
lines) as well as its estimate x̂(z, t) (blue lines) in four
different time instants and Figure 8 depicts the evolution of
the estimation error surface e(z, t) both considering z1 = 0.25,
∆t = 0.02, N = 10 and V = 10.

z

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x
(z
,
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,
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0.3
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0.6

0.7
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1
t1
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t4

t1
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t4

Fig. 7. Time evolution of the spatial profile of x(z, t) and x̂(z, t) at time
instants t1 = 1, t2 = 0.25, t3 = 0.5, t4 = 1

Fig. 8. Time and spatial evolution of the estimation error e(z, t).

It should be observed that the procedure outlined here
guarantees that the state estimate robustly converges to the
true state, provided the feasibility of the solution of the
Riccati equation at each sampling time for different design
parameters, something that is not verifiable in advance but
systematically proved from the assessment of the EKF imple-
mentation. Furthermore, as depicted in Figure 4, the sensor
location influences the convergence performance of the state
estimation error. Likewise, the increase of the parameter value
V improves the attenuation of the measurement noise as
shown in Figure 5. The decay rate convergence is slightly
improved by increasing the number of modes considered in
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the approximate solution of the infinite dimensional Riccati
equation which is substantiated with the compensation of more
slow modes presented in the error dynamics by increasing
the number of terms considered in the implementation of the
output injection operator defined in (50).

V. CONCLUSION

In this paper, an EKF-based algorithm is proposed for
estimating the state of a class of semilinear PDE systems.
In particular, the (extended) linearization of the semilinear
estimation error system is performed around the estimated
state, which results in a linear PDE system with space- and
time-varying coefficients depending on the estimated state. The
output injection operator is thereby systematically determined
by applying a sample-and-hold approach. Herein, the spectral
properties of the resulting time variant state operator are
used to transform the differential Riccati equation into a set
of coupled algebraic equations to be solved at each sample
time. Simulation results for the simplified model of a tubular
bioreactor with Monod kinetics illustrate the convergence and
robustness of the state estimator regarding the discretization of
the state estimator. It has been clearly noted that the proposed
algorithm provides accurate estimation of the state variable
provided that ∆t is sufficiently small.
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