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Óbuda University
Budapest, Hungary

ORCID: 0000-0002-5476-401X

Abstract—The Moore-Penrose pseudoinverse-based solution of
the differential inverse kinematic task of redundant robots
corresponds to the result of a particular optimization under
constraints in which the implementation of Lagrange’s Reduced
Gradient Algorithm can be evaded simply by considering the
zero partial derivatives of the ”Auxiliary Function” associated
with this problem. This possibility arises because of the fact that
the cost term is built up of quadratic functions of the variable of
optimization while the constraint term is linear function of the
same variables. Any modification in the cost and/or constraint
structure makes it necessary the use of the numerical algorithm.
Anyway, the penalty effect of the cost terms is always overridden
by the hard constraints that makes practical problems in the
vicinity of kinematic singularities where the possible solution still
exists but needs huge joint coordinate time-derivatives. While in
the special case the pseudoinverse simply can be deformed, in
the more general one more sophisticated constraint relaxation
can be applied. In this paper a formerly proposed accelerated
treatment of the constraint terms is further developed by the
introduction of a simple constraint relaxation. Furthermore, the
numerical results of the algorithm are smoothed by a third order
tracking strategy to obtain dynamically implementable solution.
The improved method’s operation is exemplified by computation
results for a 7 degree of freedom open kinematic chain.

Index Terms—differential inverse kinematic task; reduced
gradient algorithm; Moore-Penrose pseudoinverse; redundant
open kinematic chain; constraint relaxation.
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I. INTRODUCTION

As is well known the inverse kinematic task of open
kinematic chain has closed form analytical solutions only
for special constructions as e.g., the 6 degree of freedom
PUMA type arm (e.g., [1]–[3]). Such a solution normally is
possible only if three orthogonal axles have a single common
intersection point. To obtain more dexterous robot arms often
redundant constructions are used that were widely investigated
in the past (e.g., [4]–[7]). To select a particular solution of the
pool of the infinitely many ones normally the Moore-Penrose
pseudoinverse [8]–[10] is used because it minimizes the sum
of the squares of the joint coordinate time-derivatives that can
be interpreted as the most economical one that is exempt of the
unnecessary motion of the joints. This ”basic solution” later
can be ”colored” by adding to it certain elements of the null
space of the Jacobian of the problem to take into consideration
additional complementary points of view.

From mathematical point of view the background behind
the Moore-Penrose pseudoinverse is the more general task
called ”optimization under constraints” that normally numer-
ically can be solved by using Lagrange’s ”Reduced Gradient
Algorithm”. Though Lagrange suggested this method for de-
veloping Analytical Classical Mechanics [11], the appearance
of modern computers made it possible to implement it as a
general numerical solver to tackle various practical problems
under the name ”Nonlinear Programming” (e.g., [12]–[17]).
In many cases the Lagrange multipliers that are used in the
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gradient reduction process have clear physical meaning (e.g.,
[18]) that, for instance in chemistry leads to the application of
the Legendre transformation and the introduction of chemical
potentials [19], in Classical Mechanics to Hamilton’s canonical
equations of motion [20], [21] and to the use of the ”co-state
variable” in optimal control in similar manner as the canonical
momentum is associated with the canonical coordinates in
Hamiltonian Classical Mechanics (e.g., [22]–[24]). On this
basis an analogy can be observed between the solution and
the flow of incompressible fluids from which expectations for
the convergence properties of this approach generally can be
concluded.

It is generally true that where Lagrange’s algorithm stops
the partial derivative of the ”Auxiliary Function” according to
its each variable is zero. In the case of the Moore-Penrose
pseudoinverse this information immediately can be used for
obtaining the solution in the form of (1)

q̇i = JT (q)
[
J(q)JT (q)

]−1
ẋ , (1)

where qi denotes the ith joint coordinate and ẋ contains the
Cartesian workshop-based coordinates of the Tool Center Point
(TCP) of the robot arm, and further 3 other components that
describe the ”pose” of the gripped workpiece. The matrix J(q)
denotes the Jacobian of the problem. Where the quadratic
matrix J(q)JT (q) cannot be inverted the kinematic chain is
singular. To avoid the occurrence of infinite joint coordinate
time-derivatives, in solving a similar problem, Levenberg and
Marquardt suggested a little distortion of this matrix [25], [26]
as

q̇i = JT (q)
[
J(q)JT (q) + µI

]−1
ẋ , (2)

in which I is the identity matrix, and 0 < µ is a small
number in comparison with the smallest nonzero eigenvalue
of J(q)JT (q). The matrix in (2) is always invertible, and in
the non-singular points causes only minimal modification of
the solution.

In [27] a novel approach was outlined for solving the
inverse kinematic task of redundant open kinematic chains
of general structure in which the main point was the intro-
duction of more sophisticated cost function than that of the
Moore-Penrose pseudoinverse. As a consequence the need for
using the numerical algorithm naturally arose together with
the question whether is it really necessary to introduce the
co-state variables? The generalization of the Moore-Penrose
pseudoinverse for non-quadratic cost function with co-state
variables can be formulated as follows:

minimize
∑
i

Ψ(qi, q̇i) under the constraints (3a)

gs(q, q̇) ≡
∑
j

Jsj(q)q̇j − ẋs = 0∀s , (3b)

in which the variables of the optimization are the time-
derivatives q̇s, however, Ψ , and consequently ∂Ψ

∂q̇s
also may

depend on the coordinates q. In this case the reduced gradient
in Lagrange’s algorithm would be

Φi ≡
∂Ψ(qi, q̇i)

∂q̇i
+

∑
s

λs
∂gs(q, q̇)

∂q̇i
, (4)

and each Lagrange multiplier should be individually computed
by solving the linear equation obtained from the requirement
that each constraint gradient ∂gs

∂q̇ must be orthogonal to Φ.
Since orthogonality means zero scalar product, the linear
equation to be solved for { λs} would be〈

∂gu(q, q̇)

∂q̇
,
∂
∑

i Ψ(qi, q̇i)

∂q̇
+

∑
s

λs
∂gs(q, q̇)

∂q̇

〉
= 0 , (5)

and the matrix of elements

Mus ≡
(
∂gu(q, q̇)

∂q̇

)T (
∂gs(q, q̇)

∂q̇

)
(6)

should be inverted. In [27] it was realized that the compu-
tational burden of this matrix inversion can be avoided if
the fact that ∀s gs(q, q̇) = 0 holds if and only if G(q, q̇) ≡∑

s g
2
s(q, q̇) = 0 is taken into consideration. In this case the

optimization problem (7)

minimize
∑
i

Ψ(qi, q̇i) under the constraint (7a)

G(q, q̇) ≡
∑
s

∑
j

Jsj(q)q̇j − ẋs

2

= 0 (7b)

should be solved instead of the original one in (3), and only
the introduction of a single Lagrange multiplier is necessary
in the reduced gradient in (8) as

Φi ≡
∂Ψ(qi, q̇i)

∂q̇i
+ λ

∂G(q, q̇)

∂q̇i
(8)

instead of the numerous multipliers in the original problem in
(4). In this manner the inversion of the matrix in (6) can be
evaded and the algorithm can be accelerated.

In [27] numerical calculations were done for very compli-
cated Ψ(qi, q̇i) terms and the problem that in the vicinity of
the singularities the ”hard constraint” G(q, q̇) = 0 overrides
the ”penalizing effect” of the cost function was well pointed
out. In [28] a special approach applying the formalism of the
Receding Horizon Controllers [29] was suggested to relax
this hard constraint. In the present approach an alternative
”constraint softening” method is presented.

II. A SIMPLE METHOD FOR SOFTENING THE CONSTRAINT
TERMS

In control technology in the subject area of H∞ filtering
problems typical cost functions occur the positive nature of
which cannot be taken for granted, in the form of ∥z− ẑ∥22 −
γ2

[
∥w∥22 + ∥v∥22

]
(e.g., [30]), in which the positive constant γ

must be cautiously set to maintain convergence. The qualitative
interpretation of this expression is evident: the first term can
be regarded as the norm of some ”error” with the absolute
minimum of 0. The second term means the addition of certain
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negative contributions, therefore the absolute minimum of the
sum (if it exists, depending on γ) may occur at points in which
the first term is positive. In this manner the occurrence of
greater errors can be allowed in the first term.

Evidently, a similar idea can be applied in the constraint
term of the optimization problem in (7) where G(q, q̇) ≥ 0
and achieving the absolute minimum (i.e., obtaining the exact
solution of the inverse kinematic task) is desirable only if the
|q̇i| values are not ”impractically big”. Therefore, for ”small”
|q̇i| values no softening is necessary. However, if in the exact
solution certain |q̇i| values are greater than some practical
limit, the addition of certain negative contribution to G(q, q̇)
is desirable in the form of (9)

G̃(q, q̇) = G(q, q̇) +
∑
i

Z(q̇i) (9)

in which

Z(q̇i) =



0 if |q̇i| ≤ wS ,

−hS(q̇i − wS)

wS
if wS < q̇i ≤ 2wS ,

− hS if 2wS < q̇i ,

− hS +
hS(q̇i + 2wS)

wS
if

− 2wS < q̇i < −wS ,

− hS if q̇i < −2wS .

(10)

In the simulations presented in (10) the numerical values of
wS = 4.0 rad/s and hS = 100.0 were chosen, the graph of
the function is shown in Fig. 1.
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Fig. 1. The constraint softening function applied in the simulations.

It is important to note that in this case the negative contribu-
tions have a common lower bound, consequently the optimiza-
tion algorithm can remain convergent for small enough wS

and hS : the trajectory can be tracked with limited precision.
(Of course, divergence may happen, i.e., the trajectory to be
tracked ”can be lost” but this situation can be evaded by
decreasing these parameters.) Even if one of the |q̇i| values is
too big, the G̃ = 0 constraint allows G > 0, i.e., the original
task will be relaxed and this relaxation can be ”distributed”

between the members of the set {q̇i}. It is worth nothing
that the approximate numerical differentiation of the function
in Fig. 1 does not mean practical problem. In the sequel
simulation investigations will be presented.

III. SIMULATION RESULTS

To better reveal the near singular configurations, in contrast
to the special structure that was considered in [27] (it contained
one prismatic axle in a 7 degree of freedom structure), in the
present paper each axle was rotational. Its details are given in
the sequel.

A. The Kinematic Structure Investigated

The ”Home Position” of the kinematic structure is given in
Fig. 2. As in [27], the Inverse Kinematic Task of a robot can
be described by the desired position of the “Tool Center Point
(TCP)” r with respect to the Cartesian ”Workshop Coordinates
of Reference”, and the desired pose O of the workpiece or
the tool that can be achieved by various joint coordinates
q1, q2, · · · , qn (it is an ambiguous solution).

  Worshop System of Coordinates (Cartesian)

x1

x2

x3

L(1)

e(1)

L(2)

e(2)

e(3)

L(3)

L(4)

e(4)rotary (or prismatic) axle

unit vector in
the direction of
the axle

shift

Gripper’s
TCP 

~r

r

Arbitrarily chosen points on the axles

Fig. 2. The ”Home Position” of the kinematic structure.

The velocity of the TCP is given by (11)[
ṙ(t)
0

]
=

(
q̇1

dH(1)

dq1
H(1)−1

+

q̇2H
(1) dH

(2)

dq2
H(2)−1

H(1)−1

+ . . .+

+ q̇nH
(1)H(2) · · ·

· · ·H(n−1) dH
(n)

dqn
H(n)−1

H(n−1)−1

· · ·H(2)−1

H(1)−1
)[

r(t)
1

]
,

(11)

in which each axle was rotary, i.e., the homogeneous matrices
in (11) were defined as

H(i)
(
qi, e

(i), L(i)
)
≡

[
O
(
qi, e

(i)
)

L(i)

0T 1

]
(12)

in which the components of the unit vector e are distributed in

the generator of the rotation G =

 0 −e3 e2
e3 0 −e1
e2 e1 0

, and the

appropriate rotational matrix is computed by the Rodrigues
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formula [31] as O(i) = I + sin qiG(i) + (1 − cos qi)G(i)2 . In
the matrix in (11) the upper left block of size 3×3 determines
the skew symmetric rotational velocity of the object gripped
by the robot. In this equation the element of a linear space,
the tangent space of the group of the homogeneous matrices at
the identity matrix, that describes the motion of the workpiece
G(t), is expressed as a linear combination of the vectors of this
linear space

{
G(i)(q(t))

}
expressed by the joint coordinate

velocities q̇i in (13).
n∑

i=1

q̇iG
(i)(q(t)) = G(t) . (13)

For getting rid of unnecessary redundancies the independent
components can be placed in the Jacobian of the problem.
Since the upper left block of G(i) is always skew-symmetric,
and the 4th row is always zero, the independent elements
of G(i)(q(t)) and that of G(t) can be placed into a column
containing 6 rows as:

G(i) ⇔ R6 ∋ J (i) =



G
(i)
12

G
(i)
13

G
(i)
23

G
(i)
14

G
(i)
24

G
(i)
34


,

G ⇔ R6 ∋ ẋ =


G12

G13

G23

G14

G24

G34

 ,Rn ∋ ξ̇ =

 q̇1
...
q̇n

 .

(14)

In our case for n = 7 the following kinematic parameters
were applied (using the syntax of Julia language [32]): the unit
vectors and the shift parameters of the homogeneous matrices
were placed into the columns of matrices as

r_tilde=[1.0;0.0;0.0;1.0] # for the TCP

# The unit vectors of axles
es=[0 0 0 1 1 0 0;

0 1 1 0 0 1 0;
1 0 0 0 0 0 1] # nondimensional

# The shift parameters
h_=1.0
S_=2.0
l_=1.0
L_=0.5

rs=[0 0 S_ l_ L_ 0 0;
0 0 0 0 0 0 0;5
h_ 0 0 l_ 0 0 0] # [m]

B. The Cost Functions

In contrast to the very complex structure used in [27], in
the present paper the simpler choice was investigated as

Ψ(q, q̇) =

7∑
i=1

Ci

[
q̇i
∆q̇i

]4 ∣∣∣∣ qi
∆qi

∣∣∣∣Pi

. (15)

Though the gradient is produced only according tho the
variable q̇, the value of the contribution in the penalty and
its gradient also depend on q: high joint velocities q̇i are
better penalized if |qi| is too big. By using te power 4 for
q̇i the way of penalization is seriously different to that of
quadratic penalty functions. In the computations for each i
∆qi = 0.8, Pi = 2, ∆q̇i = 0.5wS , and Ci ∈ [1, 6, 1, 8, 2, 8, 1]
were chosen.

Because the reduced gradient algorithm is numerically
stropped at a limit value associated with the norm of the
reduced gradient (in the computations the steps −α2Φi were
done in (8) with α2 = 10−5, and the algorithm was stopped
when the condition ∥Φ∥ ≤ 10−4 was met), in the case of a fine
time-resolution the numerically computed values somehow
must be smoothed to obtain a dynamically traceable trajectory
for the robot. Similarly to the method also used by Bodó et
Lantos in [33] for a positive constant parameter ΛS the noisy
function u(t) can be tracked by a smoothed function f(t) in
the following manner:

(
d

dt
+ ΛS

)3

f(t) = Λ3
Su(t) (16)

that in the frequency domain (by the use of the Laplace
transform) has the transmission function

F (s) =
Λ3
SU(s)

s3 + 3s2ΛS + 3sΛ2
S + Λ3

S

, (17)

that for zero frequency s = 0 (i.e., constant signal) yields
the value 1, and for high frequencies quickly converges to 0.
Therefore, it can precisely track ”slow signals” (this concept
numerically is ”defined” by the actual value of ΛS), and rejects
the higher frequency terms that are caused by the numerical
fluctuations in u(t). (In [27] no such filtering was applied.) In
the computations ΛS = 200.0 s−1 was used.

C. Numerical Results

In the simulations results obtained without and with smooth-
ing, and without constraint relaxation (in this case hS = 0 was
chosen) and with constraint relaxation (with hS = 100.0) are
shown and compared with each other.

Figs. 3, 4, 5, and 6 reveal: the constraint relaxation made it
visible that the trajectory had three near singularity sections.
The tracking precision was to some extent corrupted by the
smoothing algorithm (Figs. 7, 8, 9, 10 11, 12, 13, and 14).
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Fig. 3. The 3D Cartesian figure of the trajectory of the TCP without constraint
relaxation, without smoothing.
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Fig. 4. The 3D Cartesian figure of the trajectory of the TCP without constraint
relaxation, with smoothing).
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Fig. 5. The 3D Cartesian figure of the trajectory of the TCP with constraint
relaxation, without smoothing.
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Fig. 6. The 3D Cartesian figure of the trajectory of the TCP with constraint
relaxation, with smoothing).
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Fig. 7. The Cartesian coordinates of the trajectory of the TCP without
constraint relaxation, without smoothing.
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Fig. 8. The Cartesian coordinates of the trajectory of the TCP without
constraint relaxation, with smoothing.

25

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 1, NO. 2, DECEMBER 2021, pp. 21-32 

 

 
 



0 200 400 600 800 1000
Steps

3

2

1

0

1

2

3

4

[m
]

Cartesian Coordinates

xNom1

xReal1

xNom2

xReal2

xNom3

xReal3

Fig. 9. The Cartesian coordinates of the trajectory of the TCP with constraint
relaxation, without smoothing.
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Fig. 10. The Cartesian coordinates of the trajectory of the TCP with constraint
relaxation, with smoothing.
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Fig. 11. The tracking error of the Cartesian coordinates of the trajectory of
the TCP without constraint relaxation, without smoothing.
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Fig. 12. The tracking error of the Cartesian coordinates of the trajectory of
the TCP without constraint relaxation, with smoothing.
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Fig. 13. The tracking error of the Cartesian coordinates of the trajectory of
the TCP with constraint relaxation, without smoothing.
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Fig. 14. The tracking error of the Cartesian coordinates of the trajectory of
the TCP with constraint relaxation, with smoothing.

The hectic variation in the tracking error in Figs. 11, 12, 13,
and 14 indicates that for obtaining a dynamically traceable
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trajectory the smoothing phase is inevitable. Figs. 13, 14
also indicates the near singular sections where the tracking
errors increased besides being very ”hectic”, and the constraint
relaxation became visible.

Figs. 15,16, 17, 18 describe slight corrupting effect of
smoothing on the orientation precision.
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Fig. 15. The orientation of the TCP without constraint relaxation, without
smoothing.
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Fig. 16. The orientation of the TCP without constraint relaxation, with
smoothing.
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Fig. 17. The orientation of the TCP with constraint relaxation, without
smoothing.
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Fig. 18. The orientation of the TCP with constraint relaxation, with smooth-
ing.
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Fig. 19. The smoothed first time-derivatives of the joint coordinates: without
constraint relaxation, with smoothing.
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Fig. 20. The smoothed first time-derivatives of the joint coordinates with
constraint relaxation, with smoothing.
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Fig. 21. The smoothed second time-derivatives of the joint coordinates p:
without constraint relaxation, with smoothing.

0 200 400 600 800 1000
Steps

400

300

200

100

0

100

200

300

[r
a
d

/s
^

2
] 

o
r 

[m
/s

^
2

]

Smoothed 2nd Time-derivatives = 200.0

q1

q2

q3

q4

q5

q6

q7

Fig. 22. The smoothed second time-derivatives of the joint coordinates with
constraint relaxation, with smoothing.

Figs. 19, 20, 21, and 22 display that due to the filtering effect
acceptable first and second time-derivatives were obtained for

the joint coordinates. (It makes not sense to give the figures
of the unfiltered quantities.)

In Figs. 23, 24, 25, 26, 27, 28, 29, and 30 the distribution
of the rotations between the joint axles controlled by the
constrained optimization can be observed.
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Fig. 23. The joint coordinates from 1 to 4 of the robot arm without constraint
relaxation, without smoothing.
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Fig. 24. The joint coordinates from 1 to 4 of the robot arm without constraint
relaxation, with smoothing.
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Fig. 25. The joint coordinates from 1 to 4 of the robot arm with constraint
relaxation, without smoothing.
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Fig. 26. The joint coordinates from 1 to 4 of the robot arm with constraint
relaxation, with smoothing.
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Fig. 27. The joint coordinates from 5 to 7 of the robot arm without constraint
relaxation, without smoothing.
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Fig. 28. The joint coordinates from 5 to 7 of the robot arm without constraint
relaxation, with smoothing.
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Fig. 29. The joint coordinates from 5 to 7 of the robot arm .
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Fig. 30. The joint coordinates from 5 to 7 of the robot arm with constraint
relaxation, with smoothing.

It is evident that due to the ambiguity caused by the redun-
dancy huge differences can be observed between the ”nominal
motion” that was used for the generation of the trajectory and
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the ”smoothed motion” that was used for tracking the position
and pose of the generated trajectory.

The effect of the ”width parameter of relaxation”, i.e., wS

also deserves investigation.
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Fig. 31. The Cartesian figures of the trajectory of the TCP for wS = 1.5 s−1.
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Fig. 32. The Cartesian figures of the trajectory of the TCP for wS = 1.5 s−1.
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Fig. 33. The Cartesian tracking error for the location of the TCP for wS =
1.5 s−1.
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Fig. 34. The orientation tracking of the TCP for wS = 1.5 s−1.
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Fig. 35. The smoothed joint coordinates for wS = 1.5 s−1.
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Fig. 36. The smoothed joint coordinates for wS = 1.5 s−1.

In the forthcoming figures wS was decreased from 4.0 s−1

to 1.5 s−1. Only the ”smoothed figures” are considered. It can
be expected that this solution allows only smaller q̇i first time-
derivatives. Figs. 31, 32, 33, and 34 remained similar to their
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previous counterparts. However, by suppressing the occurrence
of higher |q̇i| values the joint coordinates qi were kept within
a much more limited range than that of the previous examples.
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Fig. 37. The smoothed joint first time-derivatives of the joint coordinates for
wS = 1.5 s−1.
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Fig. 38. The smoothed joint second time-derivatives of the joint coordinates
for wS = 1.5 s−1.

The comparison of Figs. 19, 21 and 37 reveals that the new
setting for wS = 1.5 s−1 kept the |q̇i| values within a much
narrower range than that of the setting wS = 4.0 s−1. The |q̈i|
values remained within the same range.

IV. CONCLUSIONS

In this paper the solution of the differential inverse kine-
matic task of redundant open kinematic chains was investi-
gated in the case of quite general (not necessarily quadratic)
cost functions that allow the definition of far more so-
phisticated motion designs than the simple, Moore-Penrose
pseudoinverse-based solutions. To evade the occurrence of
impractically high first and second joint coordinate time-
derivatives in the vicinity of the kinematic singularities a
simple constraint relaxation strategy was applied. Furthermore,
to accelerate the numerical process, instead introducing the

usually great number of Lagrange multipliers as ”co-state
variables” only a single constraint term and a single Lagrange
multiplier was applied that considerably reduces the complex-
ity of the necessary numerical calculations. To compensate
the not desirable effects of stopping the numerical algorithm
at a given norm of the reduced gradient a simple third order
trajectory smoothing strategy was applied, too. To exemplify
the method a 7 degree of freedom, general structure open
kinematic chain was considered that contained only rotary
axles. For realizing the computations simple sequential code
was developed with internal Euler integration by the use of
Julia language. The computational results well testified that
the applied method well utilizes the ample possibilities that
are provided by the ambiguity of the solution of the redundant
task.
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peuvent les produire (Geometric laws which govern the displacements
of a solid system in space: and the variation of the coordinates coming
from these displacements considered independently of the causes which
can produce them). J. Math. Pures Appl., 5:380–440, 1840.

[32] J. Bezanson, A. Edelman, S. Karpinski, and V.B. Shah. Julia.
https://julialang.org, Last time visited: 5 May 2019.
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