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Abstract—Learning the optimal behavior is the ultimate goal in
reinforcement learning. This can be achieved by many different
approaches, the most successful of them are policy gradient meth-
ods. However, they can suffer from undesirably large updates of
policies, leading to poor performance. In recent years there has
been a clear trend toward designing more reliable algorithms.
This paper addresses to examine different restriction strategies
applied to the widely used Proximal Policy Optimization (PPO-
Clip) technique. We also question whether the analyzed methods
are able to adapt not only to low-dimensional tasks but also
to complex, high-dimensional problems in control and robotic
domains. The analysis of the learned behavior shows that these
methods can lead to better performance compared to the original
PPO-Clip algorithm, moreover, they are also able to achieve
complex behavior and policies in high-dimensional environments.

Index Terms—Control, Constrained policy, Proximal Policy
Optimization, Reinforcement learning

I. INTRODUCTION

Deep reinforcement learning (DRL) has demonstrated that
it can be successfully applied in a number of challenging
simulated and real-world problems, encompassing games [1],
[2], [3], continuous control [4], [5] and robotics [6], [7].

Policy gradient methods [8], [9] update policy parameters
along an estimated ascent direction of the expected return.
These approaches are well suited in domains of continuous
control, since they scale to high-dimensional action spaces
without difficulty and have a more stable performance com-
pared to value-based methods, especially with function ap-
proximation [10]. However, getting the desired results via
these techniques is challenging. Depending on the step-size
parameter, the progress can be extremely slow if it is too small
or there can be unintended drops in performance if it is too
large. Another problem is their poor sample efficiency and
even learning simple tasks can take a long time.

In recent years, there has been a trend in the direction of
improving policy gradient approaches to be more robust and
data efficient. Starting from Trust Region Policy Optimization
(TRPO) [11], through the Actor-Critic with Experience Replay
(ACER) [12] algorithm and ending with PPO [13], which has
two variants: PPO-Penalty and PPO-Clip.

It has been shown in [13] that PPO-Clip performs better
than the vanilla policy gradient with adaptive step-size, the
TRPO algorithm, the Cross-Entropy Method (CEM) [14], the
Advantage Actor Critic (A2C) [15] and its variant with trust
region [12] on continuous control tasks. In the case of Atari

games, PPO-Clip outperforms A2C and gets similar results to
ACER but has much simpler implementation.

In this paper we aim to further refine the robust PPO-Clip
algorithm with changing policy update restrictions over the
learning phase. For this, we modify its surrogate objective
function. As an extension to our earlier work [16], we analyze
new clipping strategies in addition to the previous ones and
investigate their importance in more simulated environments
to better understand their impact on the behavior of the agent.

The rest of this paper is organized as follows. Section
II presents the research background of policy gradient algo-
rithms. The setup and the proposed methods are discussed in
Section III. In Section IV, the evaluation metrics and the results
in different simulation environments are presented. Section V
gives the conclusion.

II. BACKGROUND

The loss function of policy gradient methods (1) takes the
empirical average of the parametrized policy πθ multiplied by
the estimate of the advantage function Ât over a finite batch of
samples, where the latter gives a relative benefit of selecting a
certain action in a given state. For instance, negative advantage
values lead to negative gradients, resulting in a decrease in the
probability of selecting the current action. A potential problem
with this approach is that it might lead to undesirable behavior
with large policy updates.

LPG(θ) = Êt

[
logπθ(at | st)Ât

]
(1)

TRPO was proposed as a solution to ensure monotonic
improvement during the policy updates. Instead of applying a
fixed penalty coefficient, it operates with the Kullback–Leibler
divergence (i.e., relative entropy). Under this constraint, it
takes the largest step possible towards improving the pol-
icy (2). This approach provides a more stable and reliable
policy gradient method. However, due to its second-order
optimization technique, scaling is difficult and it has high
computational complexity.

max
θ

Lπθold
(πθ)

s.t. D
ρθold

KL (θold, θ) ≤ δ, where

Dρ
KL(θ1, θ2) = Es∼ρ [DKL (πθ1(·|s) || πθ2(·|s))] .

(2)
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To overcome the aforementioned limitations of TRPO,
Schulman et al. proposed two variants of PPO [13], called
PPO-Penalty and PPO-Clip.

Similar to TRPO, the PPO-Penalty method approximately
computes updates constrained by the KL-divergence. The
difference between them is that the former uses it as a hard
constraint, the latter penalizes it in the objective and scales the
penalty coefficient throughout the training.

PPO-Clip simplifies the algorithm by completely removing
the KL-divergence from the objective function and has no
constraints (3).

LCLIP (θ) = Êt

[
min

(
rt(θ)Ât,

clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
,

where rt(θ) =
πθ(at | st)
πθold(at | st)

.

(3)

Instead of them, it operates with a special clipping term
in the objective function which removes updates that are far
from the old policy. This is solved by clipping the probability
ratio rt(θ), which measures the changed probability of the
chosen action at in state st under the new and the old policy,
respectively. The novel surrogate objective function uses a
hyperparameter ϵ with the clipping term, which keeps rt inside
the interval [1 − ϵ, 1 + ϵ]. Taking the minimum value of the
clipped and unclipped objectives gives a lower bound on the
latter.

III. METHODS

To further refine the idea of PPO-Clip algorithm, we propose
alternative clipping range approaches. Our motivation is to
continuously influence the behavior of the agent with changing
policy-update restrictions during training. For this, instead of
using the original objective function (3), we modify it to have
a time-dependent ϵt parameter (4).

LCLIPt(θ) = Êt

[
min

(
rt(θ)Ât,

clip(rt(θ), 1− ϵt, 1 + ϵt)Ât

)] (4)

Figure 1 shows two cases of the LCLIPt as a function of
the probability ratio, which are distinguished by the sign of
the advantage values. This kind of illustration comes from
the original paper [13], but we use a slight modification of it
with including the time t aspect. First, Fig. 1(a) presents the
action with an estimated positive impact on the outcome. In
this case, clipping occurs when the action becomes more likely
under the current policy than under the old one. Since this is
only a local approximation and comes from a sample of the
policy, using large updates may not be accurate, thus applying
the clipping mechanism prevents the objective function from
growing. The other case is depicted in Fig. 1(b), when the
advantage function is negative, i.e., where the action has an
estimated negative effect on the outcome. Here the clipping
occurs in the other region where the action is unlikely under

(a) (b)

Fig. 1: Clipping mechanism with time parameter in the case
of positive (a) and negative (b) advantages.

the current policy. This clipping region similarly prevents too
large updates in this direction, without which the update would
make the action much less likely. Overall, it can be seen how
the ϵ value controls the allowed policy updates. As the extra
part, we also change these clipping ranges throughout the
training according to some strategy.

Our examined methods (excluding the moving average
strategy) support: (1) higher exploration at the beginning when
the agent has limited information of its environment and (2)
stronger restrictions at the end of the training when exploiting
the knowledge of the agent obtained so far should be favored.

Equation (5) shows the clipping with a constant ϵ0 during
the training. This technique was used in the original paper. It
serves as a baseline when comparing the other methods.

ϵconstt = ϵ0 (5)

Linear and exponential decrease can be possible approaches
of varying the clipping range from the initial value ϵ0. Clipping
parameter values go to zero at the end of the training in the
case of linear decrement (6), while a slower decay can be
determined with the exponential method if the value of α is
relatively close to 1 (7). These strategies have been proposed
and analyzed in one of our previous works [16].

ϵlint =
T − t

T
ϵ0 (6)

ϵexpt = α100 t
T ϵ0 (7)

We extended these methods with two new alternative tech-
niques. First, we present a Z-shaped function (8), which starts
slowly decaying from an initial value ϵ0 followed by a rapidly
decreasing phase in the middle and finally converges to a final
value of ϵT .

ϵZ−shaped
t = ϵ0 +

ϵT

1 + e

10(t−T
2

)

T
2

(8)

Our other proposed approach adapts to the latest clipping
values with a moving average method (9). In this case, a
window of size n stores the last n clipping values, whose
average is the current clipping range. However, this mean value
might be too small in some situations, so a lower bound ϵlb
stops it from falling below that certain point. At the same time,
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Fig. 2: Analyzed clipping strategies: constant value,
exponential and linear decrease, moving average approach

and Z-shape decrease.

we also give an upper bound ϵub to prevent large changes in
order to preserve the idea of not stepping too far away from
the previous policy during an update.

ϵmov.avg.
t = min

max


n∑

i=1

ϵt−i

n
, ϵlb

 , ϵub

 (9)

Overall, the strategies analyzed in this paper consist of the
baseline constant approach, the linear, the exponential and the
Z-shaped clipping range reduction throughout the training, as
well as the moving average approach. Fig. 2 depicts examples
of these methods.

Algorithm 1 shows the resulting PPO algorithm extended
with the different clipping range strategies. The unmodified
data collection and a part of the policy optimization are taken
from [13].

IV. EXPERIMENTS

During our experiments, in order to measure how efficient
the learning is, the evaluation metrics proposed by Schulman
et al. are used to compare the clipping methods:

• Metric I. Average reward per episode over the entire
training period to measure how well the approach does
during learning.

• Metric II. Average reward of the last 100 episodes of
training to measure the final performance.

We benchmark the different clipping strategies in nine
control and robotic environments from OpenAI Gym [17] and
PyBullet [18] task suites. Our state and action spaces are based
on the original simulations, with minor modifications: input
features are normalized, image observations are downsampled
and converted to grayscale. In the PyBullet environments, time
features are concatenated to the current observations.

Algorithm 1: PPO-Clip algorithm with clipping strate-
gies

Choosing one of the following clipping range
strategies:

(a) Not decremented, using constant value ϵ (5)
(b) Decreasing linearly (6)
(c) Decreasing exponentially (7)
(d) According to a Z-shaped curve (8)
(e) Using moving average with upper and lower

bounds (9)

for iteration = 1, 2, ... do
Data collection
for actor = 1, 2, ..., N do

Run policy πθold in environment for T
timesteps

Compute advantage estimates Â1 . . . ÂT

end

Policy optimization
Update ϵt according to the chosen clipping range

method
Optimize surrogate L wrt θ, with K epochs and

minibatch size M ≤ NT
θold ←− θnew

end

The mean rewards computed for 5 seeds are shown in each
figure. The lighter shaded area in the learning curve figures
depicts the standard deviation of the results, while the darker
shaded region corresponds to the standard error of the mean.

A. Classical control tasks

OpenAI Gym offers numerous control theory problems,
which include (1) stabilizing a pole on a cart, (2) keeping a
pendulum in an upright position and (3) swinging up the end-
effector of a two-link robot to a specified height. These are
shown in the first row of Fig. 3. Solving them can be used as a
demonstration that a DRL algorithm is successful in problems
that can be addressed by traditional control techniques as well.

The analyzed clipping strategies can play a significant role
in terms of average reward in the Cart-Pole and Pendulum
environments. Many of them worked effectively, to highlight
the best ones, the linear, exponential and Z-shaped decaying
approaches showed the best performance over the whole
training. Meanwhile, the Z-shaped clipping decline and the
moving average method achieved outstanding results in the
last 100 episodes. In the case of the Acrobot, the marginal
changes in the performance suggest that the different clipping
mechanisms do not affect the behavior in this environment.

B. Continuous control tasks

Continuous control problems in the Box2D simulator are
also part of OpenAI Gym, from which the selected ones are
displayed in Fig. 4. These problems consist of (1) landing a
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(a) (b) (c)

Fig. 3: Comparison of clipping strategies on OpenAI Gym classical control simulation environments. (a) Training CartPole-v1
for 100 thousand timesteps. (b) Pendulum-v0 for 2 million timesteps. (c) Acrobot-v1 for 200 thousand timesteps.

(a) (b) (c)

Fig. 4: Learning curves on continuous control environments from OpenAI Gym. (a) LunarLanderContinuous-v2 for 2 million
timesteps. (b) BipedalWalker-v3 for 2 million timesteps. (c) CarRacing-v0 for 1 million timesteps.

rocket on a landing pad as quickly and efficiently as possible,
(2) learning the walking motion of a 4-joint robot on slightly
uneven terrain and (3) racing a car around a track from raw
pixels.

In the case of these Box2D simulation environments, the
proposed clipping strategies could not significantly exceed the
constant clipping baseline. However, we also find it important
to illustrate the limitations of these approaches by presenting
these environments, where their results are moderate.

C. Robotic control tasks
Robotic environments in PyBullet are more detailed than

the aforementioned environments and are good indicators of
whether the clipping strategies are capable of succeeding

in higher dimensional state and action spaces. The selected
environments include different configurations of 2D robots
with to goal of (1) hopping forward, (2) walking and (3)
running.

The analyzed clipping range approaches have a significant
impact on PyBullet environments, especially on the Hopper
and Walker robots. To highlight the best strategies, Z-shaped
and exponentially declining methods achieved the highest
average results in these three environments. These results are
especially important because these environments are consid-
ered to be the most complex ones as they require the learning
of high-dimensional robot-movements.
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(a) (b) (c)

Fig. 5: Experiment results from simulated robotic locomotion, using PyBullet. (a) HopperBulletEnv-v0 for 1 million timesteps.
(b) Walker2DBulletEnv-v0 for 2 million timesteps. (c) HalfCheetahBulletEnv-v0 for 2 million timesteps.

TABLE I:
OVERALL PERFORMANCE OF THE CLIPPING STRATEGIES

Metric I Metric II

Constant 0 4
Linear decrease 2 0
Exponential decrease 2 2
Z-shaped decrease 5 2
Moving average 0 1

D. Comparison

Table I shows the number of times when the strategy created
the most successful agent based on the given metric in the nine
different environments. Our proposed clipping range strate-
gies, which are designed to further refine this state-of-the-art
method of PPO-Clip, are able to achieve better results than the
original constant approach in all environments based on Metric
I, which measures the overall performance. Regarding Metric
II with the final rewards, 5 out of 9 performed with higher
scores. Especially the exponential and Z-shaped declining
strategies can be considered promising.

The detailed results of the average and the standard devia-
tion values for the each environment is presented in Table II
and Table III of Metric I and Metric II, respectively.

These results suggest that the strategies can be successfully
applied on low-dimensional tasks - as in the case of the Cart-
Pole or Pendulum, and on high-dimensional environments as
well - like in the locomotive motion of the Hopper and Walker
robots.

V. CONCLUSION

In this paper, we have introduced new clipping strate-
gies which are possible refinements to the robust PPO-Clip
algorithm. The key idea underlying our proposed methods

is to continuously influence the behavior of the agent with
changing policy-update restrictions throughout the training.
We evaluated these approaches on several control and robotic
benchmarks and demonstrated that they can adapt better in
many cases than the constant baseline.

However, there are some environments where these strate-
gies could not result in better performance. Taking this also
into account, we conclude that even though they are not
general solutions but are likely to be promising alternatives to
the constant clipping approach and they are able to deal with
problems that have complex, high-dimensional characteristics.
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TABLE II:
METRIC I EVALUATION OF CLIPPING STRATEGIES

Environment Constant Linear decrease Exponential decrease Z-shaped decrease Moving average

CartPole-v1 399.765±112.633 421.945±131.627 414.259±124.211 398.662±120.767 407.131±116.380
Pendulum-v0 −690.829±314.949 −787.112±247.400 −676.595±352.304 −623.782±350.296 −676.285±373.450
Acrobot-v1 −141.117±111.108 −141.960±104.012 −140.325±103.925 −143.725±113.115 −150.722±101.809
LunarLanderContinuous-v2 105.186±77.946 95.357±79.155 96.142±79.096 106.692±78.407 80.838±84.499
BipedalWalker-v3 111.768±122.980 75.473±94.602 85.374±106.999 117.401±119.138 43.425±100.628
CarRacing-v0 384.525±207.664 389.937±191.891 362.941±195.433 383.473±209.828 241.474±164.703
HopperBulletEnv-v0 977.438±537.832 1 103.823±645.376 1 100.564±620.442 1 199.577±632.202 523.357±465.855
Walker2DBulletEnv-v0 728.424±413.510 733.732±426.243 853.175±476.530 849.202±491.114 420.007±305.338
HalfCheetahBulletEnv-v0 1 889.533±874.252 1 851.713±891.705 1 901.982±930.460 1 927.747±875.512 1 472.236±950.840

TABLE III:
METRIC II EVALUATION OF CLIPPING STRATEGIES

Environment Constant Linear decrease Exponential decrease Z-shaped decrease Moving average

CartPole-v1 423.359±1.036 499.914±0.383 499.482±0.888 500.000±4.019 458.027±5.372
Pendulum-v0 −309.373±32.111 −428.424±26.175 −170.990±8.109 −199.032±35.718 −159.330±6.468
Acrobot-v1 −84.783±1.746 −89.356±3.311 −86.075±2.917 −87.561±6.850 −88.208±2.383
LunarLanderContinuous-v2 152.633±5.151 146.928±3.340 150.674±2.953 152.484±2.973 147.870±4.131
BipedalWalker-v3 238.901±9.248 160.512±7.534 202.059±10.620 230.381±12.223 169.297±10.833
CarRacing-v0 567.447±31.709 533.025±33.237 548.630±31.593 498.842±24.701 462.883±30.622
HopperBulletEnv-v0 1 582.347±78.729 1 776.766±61.027 1 724.929±88.722 1 818.443±59.110 1 296.595±131.718
Walker2DBulletEnv-v0 1 194.325±44.653 1 227.991±33.365 1 415.977±79.473 1 371.510±60.074 882.579±79.159
HalfCheetahBulletEnv-v0 2 520.181±18.998 2 480.074±21.191 2 600.089±28.761 2 586.257±21.353 2 462.170±57.156
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