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Abstract—In the paper a novel approach is suggested for
solving the inverse kinematic task of redundant open kinematic
chains. Traditional approaches as the Moore-Penrose generalized
inverse-based solutions minimize the sum of squares of the time-
derivative of the joint coordinates under the constraint that
contains the task itself. In the vicinity of kinematic singularities
where these solutions are possible the hard constraint terms
produce high time-derivatives that can be reduced by the use
of a deformation proposed by Levenberg and Marquardt. The
novel approach uses the basic scheme of the Receding Horizon
Controllers in which the Lagrange multipliers are eliminated by
direct application of the kinematic model over the horizon in
the role of the ”control force”, and no reduced gradient has to
be computed. This fact considerably decreases the complexity
of the solution. If the cost function contains penalty for high
joint coordinate time-derivatives the kinematic singularities are
ab ovo better handled. Simulation examples made for a 7
degree of freedom robot arm demonstrate the operation of the
novel approach. The computational need of the method is still
considerable but it can be further decreased by the application
of complementary tricks.

Index Terms—inverse kinematic task; gradient descent
method; reduced gradient algorithm; Moore-Penrose pseudoin-
verse; receding horizon control.

I. INTRODUCTION

This paper is the extended version of [1], in which a novel
approach was outlined for solving the inverse kinematic task of
redundant open kinematic chain of general structure. In special

This research was supported by the Doctoral School of Applied Informatics
and Applied Mathematics of Óbuda University.

cases, e.g., in which three orthogonal rotary axles have to have
a common point as in the case of the PUMA type robots and
certain other structures (e.g., [2]–[4]) closed form calculations
are possible. However, as is well known, generally no closed
analytical solutions exist for the inverse kinematic task of
general structures. In such cases the differential solutions
can be applied in which the Jacobian of the problem has
to be computed, and, following that, the ambiguity of the
solution has to be tackled. Normally a single solution of
the infinite number of the possible ones has to be chosen.
The most popular solution is the application of the Moore-
Penrose pseudoinverse [5]–[7] that does not exists in the
kinematically singular configurations, and in their vicinity it
results high joint coordinate time-derivatives. To avoid this
situation Levenberg and Marquardt suggested some distortion
in the solution of similar tasks [8], [9]. If the parameter of
the distortion is well set it causes negligible imprecision in
the far from singularity points, and produces acceptable joint
coordinate time-derivatives in the near singular configurations.
It must be noted that the robot is ”clumsy” in the vicinity of the
singularities, therefore it cannot be used for realizing precisely
prescribed motion. Normally, the so obtained solution can be
modified e.g., by adding components from the null space of the
Jacobian, or other programming possibilities also exist (e.g.,
[10]–[12]).

From mathematical point of view the Moore-Penrose Pseu-
doinverse correspond to the solution of an optimization task
under constraints, in a very special case in which this solution
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can be obtained without the implementation of some numerical
procedure. The sum of the squares of of the joint coordinate
derivatives has to be minimized under the constraint that the
inverse kinematic task is also solved.∑

i

q̇2i = min so that ẋ = J(q)q̇ , (1)

where x ∈ Rm contains the components of the Cartesian
coordinates of the tool center point of the robot and that
describing the pose of the workpiece, q ∈ Rn, and usually
n, m ∈ N, n > m.

II. RECEDING HORIZON CONTROLLERS

In traditional control design the basic principle was to
maintain some desired properties of the controlled system. The
efficiency of the developed control law was highly dependent
on the developer him self. To overcome this issue the Optimal
Controller (OC) framework was developed, which is a cost
functional-based solution of the controlled task. In the cost
function various, sometime contradictory requirements can be
summarized in order to find most appropriate compromise. The
cost function usually contains terms depending on the tracking
error and also on the control signal (e.g., the high values of
the control signal can be penalized). During the solution of
the control task the cost function must be optimized under
some constraints. For traditional Optimal Controllers the cost
function optimization task must be solved over an infinite
horizon, usually utilizing Dynamic Programming approach
as a new formalism in the calculus of variations related to
the Hamilton-Jacobi-Bellman equations elaborated by Bell-
man in 1954 [13]. This solution method is computationally
highly demanding and also requires very precise model of
the controlled system to prevent the accumulation of the
errors due to modeling imprecision. For these reasons in
industrial (e.g., [14]–[16]) and also in economical (e.g., [17])
applications the Model Predictive Control (MPC) used widely
where the optimization is calculated over a finite horizon and
only the first part is applied for the controlled system. In
Model Predictive Controllers the dynamic equations of the
controlled system are taken account as the constraint of the
optimization task. In the late 1970s [18] special heuristic ap-
proach for the MPC was introduced, called Receding Horizon
Controller (RHC) which have better properties (e.g., stability,
performance) compared to the traditional Model Predictive
Control [19] in certain applications. In RHC scheme the
time variable is approximated over a discrete time grid as
[t0, t1 = t0 + ∆t, t2 = t1 + ∆t, ..., tn = tn−1 + ∆t], n ∈ N
which resolution (∆t) must be fine enough to apply Euler
integration over the points. The cost function is calculated at
each grid point over a finite horizon. As it was mentioned
before in the cost function various requirements can be taken
into account besides the tracking error. It can be constructed
as the sum of multiple non-negative expressions which are
differentiable functions of the system’s state variables and
the control signal. However, it is worth to be mentioned that
these contributions might have negative effect on the tracking

precision so the weight contribution of each term must be
set accordingly. Also the dynamic model of the controlled
system must be taken into account as a set of constraints
during optimization of the function. However, the optimization
task of such a cost function is much simpler (compared to
Dynamic Programming in case of traditional OCs) to solve
by utilizing Non-Linear Programming methods. For a system
with the following state propagation equation

ẋ = f(x, u) , (2)

in which x ∈ RN denotes the state variable and u ∈ RM

stands for the control signal, the optimization task with the
appropriate cost function in grid point ℓ, Φ (x(ℓ), u(ℓ)) for-
mulates as

minimize
HL∑
ℓ=0

Φ (x(ℓ), u(ℓ)) under the constraints

∀i ∈ {0, . . . ,HL− 1} :

x(i+ 1)− x(i)

∆t
− f (x(i), u(i)) = 0 .

(3)

In equation (3) HL ∈ N denotes the horizon length and
the x(i+1)−x(i)

∆t − f (x(i), u(i)) = 0 term is the constraint
which takes into consideration the dynamic equations of the
controlled system with some numerical approximation.

The optimization problem can be solved by
utilizing Lagrangian multipliers. The independent
variables of the above described problem are
[x(1), x(2), ..., x(HL)], [u(0), u(1), u(2), ..., u(HL − 1)]
and [λ(0), λ(1), λ(2), ..., λ(HL − 1)], λ(i) ∈ RN , since x0

refers to the initial state of the system which can be measured
or observed somehow. Also, due to the law of causality that is
formulated in the form of the forward differences, the given
state x(i) and force u(i) in the grid point i determines the
state variable x(i + 1) at the next grid point. By introducing
a λ(i) Lagrangian multiplier for each constraint equation in
the ith grid point the reduced gradients formulates as

∇

(
HL∑
ℓ=0

Φ (x(ℓ), u(ℓ))

)
+

N∑
k=1

λk(i)∇
(
xk(i+ 1)− xk(i)

∆t
− f (k) (x(i), u(i))

)
.

(4)

The Lagrangian multipliers must be so chosen that the con-
straint function must stagnate for a small step in the direction
of the reduced gradient. This way optimization problem can be
solved by applying Lagrange’s Reduced Gradient algorithm,
as move with small steps along the Reduced Gradient until
it becomes 0. Then a local solution of the constrained opti-
mization problem has reached. Assuming that the constraint
equations have solution, the initial point for the optimization
can be found by utilizing Newton-Raphson algorithm [20].
In the practice, for evading the accumulation of the effects
of external disturbances and modeling imprecision, only the
control signal (u(i)) to be exerted in the first point of the
horizon is taken into account, and the system’s state actually
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achieved by this force (x(i+ 1)) has to be directly measured
or somehow observed in the starting point of the next horizon.

In the present paper it will be shown how the above
described formalism can be used for the solution of the inverse
kinematic task for a redundant manipulator. Also, since we
do not wish to utilize any physical analogy for the Lagrange
Multipliers (in some cases the Lagrenge multipliers might have
important physical meaning e.g., [21]) instead of the Reduced
Gradient Algorithm a simpler Gradient Descent Algorithm is
used that way getting rid of gradient reduction.

III. RECEDING HORIZON SCHEME-BASED APPROACH FOR
SOLVING THE INVERSE KINEMATIC TASK

As it was mentioned before when formulating cost func-
tional for our task, huge control forces can be penalized in
Receding Horizon Control algorithm. This property can be
very useful during the solution of the inverse kinematic task
since near to singular positions, as ẋ approaches the null space
of JT , JT ẋ → 0, therefore q̇ → ∞ must compensate this
effect, resulting in very high joint velocities.

The above described formalism can be applied for the solu-
tion of the inverse kinematic task in the following manner, in
place of the state propagation equation (2), the non-differential
mapping of the forward kinematic task F (q) : Rn 7→ R6 can
be placed and the u control signal is replaced the possible
values of joint velocities q̇ ∈ Rn, which are the independent
variables of the optimization task. That way a simple Euler
integration can be applied over the grid points as

q(i+ 1) ≈ q(i) + ∆tq̇(i) , (5)

from the starting point q(0) that is given in advance (in
practice it can be measured by the encoders in each joint of
the manipulator). Next the cost function can be constructed
which has two terms, one penalizes the trajectory tracking
error, which can be calculated based on the XN (i)−F (q(i))
error terms, and the other one penalizes the high joint velocity
values (q̇(i)). The independent variables of the so constructed
cost function are the [q̇(0), q̇(1), ..., q̇(HL− 1)] values where
HL denotes the prediction horizon length. Also, since no
constraint applied for the cost function the gradient reduction
and the application of the Lagrange Multipliers can be evaded
and a simpler Gradient Descent Algorithm can be used to
minimize the cost function. For realizing this program an
appropriate representation of the ”pose” coordinates of the tool
must be elaborated. It can be done as follows.

Traditionally the pose of the tool is represented by a
Homogeneous Transformation Matrix, the left upper 3 × 3
part of which describes the orientation of the tool and the
right upper 3 × 1 part represents position of the Tool Center
Point (TCP) and in the 4th row [0, 0, 0, 1] components are
placed as

H (ξ, e, r) ≡
[

O (ξ, e) r
0T 1

]
. (6)

Such a representation can be very useful during the solution of
the different kinematic tasks since with Homogeneous Trans-
formation Matrices the rotations and shifts can be described

simultaneously, however, it is a highly redundant representa-
tion of the pose of the tool. The 3×3 rotation matrix contains
only 3 independent elements which can be easily extracted by
considering the following equations. As it is well known every
quadratic matrix can be reconstructed from a symmetric and
an skew-symmetric part as

O =
1

2

(
O +OT

)
+

1

2

(
O −OT

)
. (7)

Also, by utilizing that the odd powers of the generator (G) of
the rotation are G2n+1 = −G, n ∈ N, the odd and even powers
of G can be separated in the power series of exp

(
qiG

(i)
)

so
the Rodrigues formula [22] is obtained in (8) as

O = exp(qG) = I +

 0 −e3 e2
e3 0 −e1
−e2 e1 0

 sin q+

+

 e21 − 1 e1e2 e1e3
e2e1 e22 − 1 e2e3
e3e1 e3e2 e23 − 1

 (1− cos q) ,

G =

 0 −e3 e2
e3 0 −e1
−e2 e1 0

 ,

3∑
i=1

e2i = 1 .

(8)

From the above equations it can be clearly seen that
the 3 independent element of the rotation matrix can
be expressed from the skew-symmetric part, OA =
1
2

(
O −OT

)
. On this basis a ”model function” F :

Rn 7→ R6 is used for describing the forward kinematic
task as F1(q1, . . . , qn) = OA

12, F2(q1, . . . , qn) = OA
13,

F3(q1, . . . , qn) = OA
23, F4(q1, . . . , qn) = r1, F5(q1, . . . , qn) =

r2, and F6(q1, . . . , qn) = r3. In the horizon the following
elements are filled in:

• The ”Nominal Cartesian Trajectories”
XN (1), . . . , XN (HL) that are known in advance
since definite ideas are available for the future of the
nominal motion;

• The also known initial joint coordinates in the first
grid point q(1) are taken from the last ”actual” value
(in the control applications it is measured or somehow
”observed”);

• By using the q̇ values in the grid points
{q̇(1), . . . , q̇(NL − 1)}, with Euler integration, fill
in the horizon points as q(i + 1) = q(i) + ∆tq̇(i) for
i = 1, . . . ,HL− 1;

• By the use of the model function compute the assumed
future Cartesian values XO(i) = F (q(i)) for i ∈
{2, . . . ,HL};

• Compute the cost functions over the grid points i ∈
{2, . . . ,HL} and the penalty values for the q̇ components
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over the grid points i ∈ {1, . . . ,HL− 1} as

Φ =

6,HL∑
j=1,i=2

ΦX
j (i) +

6,HL−1∑
j=1,i=1

ΦU
j (i)

ΦX
j (i) =


∣∣∣∣XN

j (i)−XO
j (i)

∆x

∣∣∣∣PX

if
∣∣∣∣XN

j (i)−XO
j (i)

∆x

∣∣∣∣ > 1∣∣∣∣XN
j (i)−XjO(i)

∆x

∣∣∣∣2 if
∣∣∣∣XN

j (i)−XO
j (i)

∆x

∣∣∣∣ ≤ 1

ΦU (i) =


∣∣∣ q̇(i)∆q̇

∣∣∣Pq̇out

if
∣∣∣ q̇(i)∆q̇

∣∣∣ > 1∣∣∣ q̇(i)∆q̇

∣∣∣Pq̇in

if
∣∣∣ q̇(i)∆q̇

∣∣∣ ≤ 1

• The so computed cost function can be minimized by
using the simple Gradient Descent Algorithm so that the
components of ∇Φ can be arranged in a matrix of size
R6×(HL−1);

• The starting point of the next horizon will be the element
q(2) of the so optimized horizon, and the joint coor-
dinates’ time-derivatives can be estimated by the value
that is found in q̇(1) of the present horizon after the
optimization.

In the cost contribution ΦX
j (i) the component tracking errors

that in absolute value are greater than ∆x are very strongly
penalized if PX > 1, and for smaller error components the
usual quadratic tracking rule is prescribed. In similar manner,
in the term ΦU

j (i), the joint coordinate time-derivatives are
very seriously penalized if their absolute value is bigger than
∆q̇ and Pq̇out

> 1, but the small values’ penalty contribution
is very small if Pq̇in > 1. Therefore it is expected that by
the use of these ”shape parameters” the trajectory tracking
precision can be ”relaxed” if the high q̇ values are seriously
penalized. In the sequel simulation results will be shown and
the operation of the above idea will be discussed on the basis
of the computations.

IV. THE SIMULATION RESULTS

Fig. 1. The kinematic structure and parameters of a 7Dof robot arm in ”Home
Position”

In this paper a 7DoF, redundant robot arm with six rotational
(r) and one prismatic (s) joint (arranged as [r, r, s, r, r, r, r]) is
analyzed via Simulation programs made in Julia programming

language [23]. The basic kinematic structure of the robot arm
is shown in Fig. 1. In ”Home Position” where all the joint
coordinates are 0 the unit vectors of the joint axels (ei) can be
described by matrix E in which each column represents a unit
vector, furthermore, the length parameters of each segment are
also arranged into a matrix R,

E =

 0 0 0 1 1 0 0
0 1 1 0 0 1 0
1 0 0 0 0 0 1

 , (9)

R =

 0 0 S l L 0 0
0 0 0 0 0 0 0
h 0 0 l 0 0 0

 ,

S = 2m,h = l = 1m,L = 1.5m

(10)

and the homogeneous coordinates of the vector pointing into
the Tool Center Point are r̃ = [1, 0, 0, 1]. The time-resolution
of the grid was ∆t = 10−3 s, the horizon length was
HL = 3, the gradient descent algorithm was stopped when the
∥∇Φ∥ ≤ µ = 20 was achieved, the components of the gradient
were estimated with a finite step length δq̇j(i) = 10−3 for
each j, i index pairs. The maximum allowed number of steps
in the optimization was 450. The Gradient Descent algorithm
was realized as q̇(next) = q̇(now) − α2∇Φ(now) with
α2 ∈ [10−8, 5 · 10−4]. To achieve fast convergence, the actual
value of α2 was increased by the factor 1.2 for the next cycle
if ∥∇Φ∥ was reduced in the previous step, but it was decreased
by dividing it with 1.2 if this value have increased. However,
its value was kept between the above given range. In the first
series a relatively fast trajectory was tracked by using the
above parameters. In a basic settings ∆x = 10−3 rad or m,
PX = 3, Pq̇out

= Pq̇in = 4, ∆q̇ = 0.8 rad · s−1s or m · s−1

were chosen. For the simulation the trajectory to be tracked
was generated in the joint space using the equation below

qNom
i = Ai sin(ωt) , (11)

A = [0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0], ω = 3 .

Then by utilizing the forward kinematic equations the nominal
trajectory was mapped to the work space, XNom = F (qNom).
Figures 2 and 3 reveal that in this manner it was possible
to track a relatively fast motion with acceptable precision.
Figure 4 shows that the nominal and the realized trajectories
are different so the solution is ambiguous and an optimal one
was chosen based on the requirements formulated in the cost
function. However, Fig. 5 shows considerable fluctuation in the
joint velocities which might cause problem in real applications.

The Julia programming language also makes it possible
the measure time need of our calculations. The Fig. 6 shows
nicely that each step over the horizon takes around 1s and it
is proportional to the amount of step done during the gradient
descent algorithm. In most of the time maximal number of
allowed steps was reached. It can be concluded that this
solution method is very time consuming, but it might not
be a problem during offline applications. The simulations
were running from a Lenovo X250 Laptop, under Windows10
operating system.
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In the next step a much slower motion was analyzed. For
generating the trajectory of the slower motion a sigmoid
function was intduced, f(x) = x

1+|x| and the trajectory in
the joint space was generated as follows

qNom
i = Sf(Ai sin(ωt) ), (12)

A = 0.5 · [0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0], ω = 3, S = 0.3 .

The results given in Figs. 7, 8 9 and 10 reveal that for
much slower motion more precise trajectory tracking can be
achieved. Since the joint velocity limitations has less affect
on the tracking error, on the other hand more significant
fluctuations occurred in the joint velocities.
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V. SECOND ORDER TRAJECTORY SMOOTHING

As it was shown in the previous section the control feed-
back caused high fluctuation of the derivatives of the joint
coordinates (5), which is obviously getting worse when the
second order derivative (q̈) is considered. It may result in
unwanted vibrations in the mechanical system also may cause
serious problem during the control design. These sudden
changes in the derivatives might make the trajectory tracking
for the control algorithm impossible and also stability issues
may occur. To resolve these issues a second order smoothing
function suggested in this section. Lets introduce R ∋ Λ > 0
constant ”error relaxation time constant” and a g(t) ∈ Rn

noisy function which must be tracked by function f(t) ∈ Rn.
By utilizing the the differential operator

(
Λ + d

dt

)n
, n ∈ N

the following set of differential equations can be written(
Λ +

d

dt

)n

f(t) = Λng(t) . (13)

If g(t) ≡ const. (or it is changing very slowly) then the
derivatives of f(t)(ḟ(t), f̈(t)etc.) must be zero, that way it
can be obtained that Λnf(t) = Λng(t). For higher frequency
signals Laplace transform of (13) can be investigated,

(Λ + s)
n
F (s) = ΛnG(s) . (14)

By utilizing the Binomial Theorem (14) can be rewritten as,

F (s) =
1∑n

k=0
n!

k!(n−k)!Λ
n−ksk

ΛnG(s) . (15)

From (15) can be seen that for low frequencies when
s ≈ 0 the tracking signal is nicely following the ”noisy”
signal, g(t) = f(t). However, for higher frequencies the noisy
signal is approximately damped by factor 1

sn . Basically it
means that the higher frequency values of signal g(t) are
cut off so the smoothed trajectory can be utilized for control
purposes. Instead of g(t) the calculated q(t) values are written,
which have high fluctuation so they are ”noisy”. The f(t)
function is replaced by the smoothed trajectory (qSmo) and
second order differential equation is written based on (13) as(
Λ + d

dt

)2
qSmo(t) = Λ2q(t) from which the q̈Smo can be

expressed:

q̈Smo(t) = Λ2
(
q(t)− qSmo(t)

)
− 2ΛqSmo . (16)

Than the above described differential equation can be easily
solved by applying Euler integration

q̇Smo(t+∆t) = q̇Smo(t) + ∆tq̈Smo(t) ,

qSmo(t+∆t) = qSmo(t) + ∆tq̇Smo(t) .
(17)

For simulation results presented down below the smoothing
parameter Λ = 300 1

s . From Fig. 11 can be seen that the
simulations result meet our expectations and the fluctuation of
the joint velocities is significantly reduced. However, Figs. 13
and 14 show that for the smoothed trajectories the tracking
error is significantly higher, although it is worth to mention
that for fast motions this precision can acceptable.
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VI. CONCLUSION

In this paper a flexible approach was considered for the
solution of the inverse kinematic task of redundant manipu-
lators with open kinematic chain. Instead of the traditional
generalized inverse and quadratic cost function optimization-
based solution a Receding Horizon Scheme-based approach
was characterized. The inverse kinematic task was formulated
without using constraint functions and associated Lagrange
Multipliers so the gradient reduction has been evaded. Such
a solution can be very useful as in the cost function multi-
ple, sometimes contradictory requirements can be taken into
account with different weight contribution which makes this
solution very flexible. Through some simulation results it
was shown that such solution can provide acceptable tracking
errors even for higher velocities. However, during the simula-
tions two issues occurred. One of them is that in some steps
high fluctuation of joint velocities could be observed which
can result in unwanted vibrations in the mechanical system and
also can cause problems during control design. To resolve this
problem a smoothing function was introduced in this paper.
The other one is that this solutions is computationally very
demanding so it is possible that such a solution mainly can be
used for offline applications.
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