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Abstract— The process of traffic control systems 

significantly relies on the immediate detection of breakdown 

states. As a result of their crisp (non-fuzzy) based calculation 

procedures, conventional traffic estimators and predictors 

cannot effectively model traffic states. In fact, these methods are 

characterized by exact features, while traffic is defined by 

uncertain variables with vague properties. Furthermore, typical 

numerical methodologies have constraints on evaluating the 

overall system status in heterogeneous and convoluted networks 

mainly due to the absence of reliable and real-time data. This 

study develops a fuzzy inference system that uses data from the 

Hungarian freeway networks for predicting the severity of 

congestion in this complex network. Congestion severity is 

considered the output variable, and traffic flow along with the 

length and the number of lanes of each section are assigned as 

input variables. Seventy-five fuzzy production rules were 

generated using accessible datasets, percentile distribution, and 

experts' consensus. The Matlab Fuzzy Logic Toolbox simulates 

the designed model and analysis steps. According to available 

resources, the results demonstrate linkages among input 

variables. Analyses are also used to construct intelligent traffic 

modeling systems and further service-related planning. 

Keywords—Fuzzy inference, intelligent transportation, 

congestion prediction  

I. INTRODUCTION  

Intelligent systems offer a systematic, structured approach 
for addressing critical and complex problems and generating 
consistent and reliable solutions over the practice. From a 
computational standpoint, intelligent systems have two main 
characteristics; dealing with complex issues in real-world 
circumstances and finding the same answers and results for 
identical categories of problems by a computational analysis 
model [1], [2]. Traffic is one of these problems in which a 
combination of involved elements and their interactions turn 
it into one the most convoluted systems [3] [4]. This 
complexity might be addressed by improving existing 
parameters, which lead to expanding the road capacity (e.g., 
increasing the number of the road lanes) or utilizing intelligent 
techniques to minimize breakdown and congestion severity 
more cost-effectively [5]. However, [6] showed that 

increasing the road capacity will not minimize traffic but 
cause more congestion. One effective method to control traffic 
is to establish an efficient and accurate system, which can 
assist better in allocating transportation resources and 
dispersing flow before traffic breakdown. The Intelligent 
Transportation System (ITS) is the most frequently used one 
among such systems [7], [8] which  have been presented in 
traffic-related problems [9], [10] to deal with them more 
efficiently by new data inferencing and communication tools 
[11].  

A range of modern technologies, such as transportation 
communication systems, are integrated with ITS [12]. 
Furthermore, by leveraging the development of 5G based 
communication and numerous on-road sensors, ITS may 
enhance traffic efficiency, reduce congestion severity, boost 
road capacity, and minimize pollution and traffic accidents 
[13], [14], [15]. As a critical component of ITS, an effective 
and precise road traffic modeling is needed to offer continuous 
and exact road status information based on historical freeway 
data [16]. Estimating and predicting the level of traffic in a 
specific section of the freeway is among the common 
attributes of such models. These characteristics are frequently 
based on standard mathematical methods, e.g., statistical 
regression, which is incapable of coping with the complexities 
of freeway traffic dynamics and connections among its 
elements. Moreover, engaged variables are primarily 
connected with uncertain characteristics since they are directly 
affected by factors relating to human behavior and decisions; 
as a result, these variables and the level of uncertainty in their 
quantities must be considered in the computation of the 
system. 

Using human knowledge to tackle problems that require 
human intelligence is the crucial concept of intelligent 
systems [17]. The fuzzy inference system is a verified model 
of human knowledge, with applications in a large variety of 
domains [18]. The main reason for the diversity of 
applications is due to the features and functionality of fuzzy 
rule-based techniques. For example, because of their 
capabilities to assign connections among input and output 
parameters in nonlinear and dynamic systems, and more 
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importantly, to address uncertainty by offering linguistic 
variables and graded membership [19]. As an extension of the 
research originally presented at the SACI 2021 conference 
[20], this study attempts to use fuzzy techniques' 
characteristics to predict congestion levels in a network of 
freeways with uncertain observations and causal relationships. 
Although prior literature has investigated many traffic 
engineering related problems, this study developed a 
Mamdani type fuzzy rule-based inference system in 
preference to employing conventional mathematical 
techniques in order to model the available variables in 
predicting the severity of congestion. In the developed model, 
congestion severity is considered the output variable, and 
traffic flow values along with the lengths and the number of 
lanes of each section are selected as input variables. The 
generated model is simulated and validated by the Matlab 
Fuzzy Logic Toolbox R2020b.  

Accordingly, this study is aimed to demonstrate the efficiency 
of fuzzy inference in modeling an immensely heterogeneous 
and convoluted system to predict the level of congestion based 
on data collected from the Hungarian network of freeways. 
The following part discusses several traffic-based control 
methods. The third part explains the procedures for 
developing fuzzy inference-based systems, focusing on 
Mamdani-inference. Later, the modeling processes and 
dataset description are explained before performing the 
findings and conclusion. 

II. TRAFFIC CONGESTION MODELING 

Reducing traffic congestion is considered a vital part of 
traffic control-related strategies since its role is undeniable in 
the sustainability and development of transportation and 
mobility systems [10]. The dynamic nature of traffic behavior 
in transportation systems and defining involved parameters by 
precise relations were the main motivations of creating traffic 
flow models. Mathematical theories of traffic flow began in 
the early 1950s [11]. Defining connections and relations 
between human-involved parameters (e.g., drivers, 
pedestrians) and infrastructures associated parameters (e.g., 
freeways, number of lanes) is the central part of these theories, 
which aim to comprehend and evolve transport systems with 
effectual mobility and avoid traffic breakdown. Traffic 
breakdown is a crucial concept in the transportation systems 
analysis because it is regarded as a critical point where 
increasing traffic volume beyond it can lead from uncongested 
flow to congested state [21]. Adequate traffic mobility is 
reachable by considering three factors, continuous traffic 
flow, traffic monitoring, particularly at known traffic 
breakdown areas, and identifying and solving accident-related 
risk factors [22]. For dealing with mentioned factors, three 
parameters of traffic flow description are highlighted: 
velocity, density, and flow [5], [23]. These parameters are 
macroscopic traffic model variables where aggregate traffic 
parameters or the overall behavior of the traffic stream are 
modeled [24]. 

 The necessity of using reliable congestion detection and 
prediction techniques mainly arose from recent advancements 
in intelligent transportation systems. These techniques are 
categorized on two primary levels: first, conventional methods 
formed on statistical approaches (e.g., autoregressive 
integrated moving average, Kalman filtering) joined with the 
flow and congestion-related parameters; second, data-driven 
methods employing machine learning algorithms (e.g., 

artificial neural network, support vector regression, and fuzzy-
based computation). These methods are the most frequently 
applied techniques in the latest researches [25], [26]. 
Employing such techniques requires clarifying traffic 
congestion concepts. Although it has been investigated and 
developed in various aspects [27], demand–capacity 
equilibrium is a significant characteristic of congestion that 
needs to be considered. This category is a relative caliber of 
traffic flow or a proportion of the best possible condition of 
the freeway and current condition which any change in 
equilibrium between traffic flow and approximate capacity of 
the freeway can affect travel time, economic aspects, and 
variation of behavior. Approximation plays a significant role 
in all involved traffic measurements; this means that each 
involved parameter in the modeling of congestion in respect 
to the precision of its representation among real-world 
circumstances needs to be analyzed by a framework that can 
deal with ambiguity and uncertainty. Therefore, the 
computation of grading description of congestion levels 
necessitates being fuzzy (particularly, as the uncertainty 
involved here is in a large part of non-statistical nature). Fuzzy 
inference methods not only can be beneficial in determining 
the degree of congestion but also can homogeneously 
approximate and model every existing continuous nonlinear 
system to a subjective degree of exactness [28]. Describing the 
level of traffic is connected to uncertainty-associated 
properties. Already in his early work Zadeh illustrated that 
uncertain rational statements allow the development of 
methods that employ uncertain information to derive 
imprecise analysis [29], [30]. Among the first researches, [31] 
proposed the fuzzy inference-based method to deal with a 
specific problem of traffic congestion where a fuzzy-based 
controller was implemented in an intersection to compare the 
results with the conventional vehicle-actuated controller; 
consequently, performed analyses indicated that the fuzzy 
based controller had a better performance. 

III. FUZZY INFERENCE-BASED SYSTEMS 

Fuzzy set theory proposed by Zadeh [29] has been 
employed afterward to deal with numerous scientific and 
industrial problems in different fields of science and 
technology. Along with its capability of handling uncertain 
and imprecise information, since fuzzy theory provides a basis 
for applying expert supervised customizations in the form of  
If-Then rules, human knowledge has a central role in 
engineering and designing procedures [30]. The most 
significant part of this idea is overcoming and dissolving the 
crisp set limitations where individuals are dichotomized 
(divided into two sharply defined classes) as members and 
non-members. Handling these limitations is achieved by 
increasing the volume of acceptable and allowable uncertainty 
through sacrificing some of the accurate information in favor 
of an ambiguous but more robust represenatation [29]. The 
membership or non-membership of value x in the binary set A 

is assigned by function 𝜇𝐴 of A, illustrated by Eq. 1 [32]: 

𝜇𝐴(𝑥) = {
1,     𝑖𝑓 𝑥 ∈ 𝐴
0,     𝑖𝑓 𝑥 ∉ 𝐴

 
(1) 

 

 As opposed to a crisp set in which a sharp and 
unambiguous distinction exists between the members and 
non-members, a fuzzy set allows ambiguity with the aim of 
reducing complexity by eliminating the sharp boundary 
separating members of the set from non-members. Therefore, 
a value (an element within a variable set) can partly be a 
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member of a specific set. These values are computed with 
linguistic metaphors rather than numerical expressions [31]; 
an element is assigned to a class with membership function in 
closed interval 0 and 1; 1 expresses complete membership and 

0 means non-membership. Membership function 𝜇𝐴 
quantifies the degree of belonging of x to A.  In Eq. 2, the fuzzy 
set A over the universe U is given [33], [34]: 

𝐴 = {𝑥, 𝜇𝐴(𝑥)|𝑥 ∈ 𝑈} (2) 

These characteristics of fuzzy sets along with their 
possible representation as linguistic terms offer a 
computational algorithm for modeling and resolving 
imprecision and uncertainty associated problems, these latter 
being inseparable features of nonlinear and complex systems 
[35]. A fuzzy-rule based system is generally formed by four 
components containing fuzzification (determination of the 
degree of matching), knowledge base, fuzzy inference system, 
and defuzzification (fig. 1). 

  
Fig. 1. Fuzzy Inference Architecture [18] 

A. Fuzzification 

The first step in forming a fuzzy inference system is 

fuzzification. As a mathematical process, it is required for 

transforming a value in the universe of discourse to a 

membership function of the fuzzy set [18]. It contains the 

procedure of converting crisp inputs into a degree of 

membership through membership functions for producing 

linguistic metaphors (e.g., high, very high). Membership 

functions are the pivotal players in the fuzzification step. In 

the practice, they have various sorts of linear and nonlinear 

forms (e.g., triangular, trapezoidal, Gaussian) where their 

types are chosen based on the context and the modeled 

problem and the experts' perspectives [36]. Triangular and 

trapezoidal membership functions as the most often 

employed types in fuzzification are given in Eq. (3) and (4), 

respectively [37]: 

 

   𝑓(𝑥; 𝑎, 𝑏, 𝑐) ⇒  𝜇𝐴(𝑥) =  max [ min [
𝑥−𝑎

𝑏−𝑎
,
𝑐−𝑥

𝑐−𝑏
] , 0]    

  

 (3) 

𝑓(𝑥; 𝑎, 𝑏, 𝑐, 𝑑) ⇒  𝜇𝐴(𝑥) =  max [ min [
𝑥−𝑎

𝑏−𝑎
, 1,

𝑑−𝑥

𝑑−𝑐
] , 0]   (4) 

where 𝜇𝐴 (x) is a membership function of a linguistic variable 

in the fuzzy set; a, b, c, and d are the parameters of the 

piecewise linear fuzzy membership functions. 

 

B. Knowledge base 

This component of the system contains two central units; a 
rule base unit including the fuzzy if-then rules of the system, 
and the system database unit that expresses the membership 
functions which are employed in the fuzzy rules. These rules 
are characterized either by experts' assessment or are 
determined by data analysis algorithms (machine learning, 

i.e., through clustering or evolutionary algorithms) [38]. The 
connections between inputs and output are assigned by fuzzy 
conditional functions, called fuzzy if-then (production) rules. 
Fuzzy conditional rules are formed by a premise or antecedent 
coupled with a result or consequent part. For instance, if x is 
high, then y is low, where 'high' and 'low' are expressed by 
membership functions [39]. In other words, if the observation 
matches with some premises, the respective rules are „fired” 
in the inference system, and they participate to some degree in 
making the decision [40]. In fuzzy models, every rule is 
expressed by a relation which is stated as: 

𝜇𝑅𝑖(𝑥, 𝑦) = 𝐼(𝜇𝐴𝑖(𝑥), 𝜇𝐵𝑖(𝑦)),    𝑖 = 1, 2, . . . , 𝑛     (5) 

where membership degree of rule i in connection to inputs x 
and y is shown as 𝜇𝑅𝑖(𝑥, 𝑦); 𝜇𝐴𝑖(𝑥) is the membership degree 
of input x and  𝜇𝐵𝑖(𝑦) is the membership degree of input y, I 
represents and or or operators, and n is the number of rules 
[37]. 

C. Fuzzy Inference Engine (FIE) 

The procedure of mapping and modeling inputs and outputs 
derived from the fuzzification step is accomplished in this 
phase by combining the fuzzy if-then rules  with the degrees 
of matching obtained from the observation [41]. In this 
procedure, using the reasoning technique or aggregating the 
defined rules by employing a conjunctive and/or disjunctive 
method. Various types of fuzzy inference systems (e.g., 
Mamdani, Sugeno, Tsukamoto-Singleton) are widely applied 
and accepted in terms of modeling numerous academic and 
industrial problems [37]. Rule aggregation and defuzzifying 
algorithms are unique in each fuzzy inference system; for 
instance, the algorithm in the Mamdani approach is associated 
with linguistic variables, while in the Takagi-Sugeno method, 
in the consequent part there is a piecewise linear function 
connecting the inputs and the output. In this paper, the 
Mamdani inference system is chosen to be applied due to its 
simple and advantageous features. The Mamdani fuzzy 
system has been c applied for dealing with a very wide scope 
of complex problems, among others, in the field of traffic 
engineering as well [5], [9], [36]. This model employs fuzzy 
set representation to convert the utterly unstructured linguistic 
heuristics into an executable algorithm [37], [38]. The if-then 
rule process of the Mamdani algorithm (Fig. 2) is: 

If 𝑥1  is 𝐴𝑖1  and 𝑥2  is 𝐴𝑖2  and …𝑥𝑟  is 𝐴𝑖𝑟  then 𝑦  is 

𝐵𝑖 (for 𝑖 = 1, 2, ...k)                         

(6) 

where 𝑥𝑖 is the input variable and the output variable is y, 
𝐴𝑖𝑟 𝑎𝑛𝑑 𝐵𝑖 are linguistic terms, and k is the number of rules. In 
determining fuzzy relations in the proposed model, applying 
proper composition techniques is a crucial step. Among 
various composition techniques, max-min is the most 
commonly used [39]. An illustration of a two-rule max-min 
composition of the Mamdani inference mechanism is shown 
in Fig. 2. This composition mathematically is formulated as 
follows: 

𝜇𝐶𝐾(𝑍) =  max [ min [𝜇𝐴𝐾(𝑖𝑛𝑝𝑢𝑡(𝑥)), 𝜇𝐵𝐾(𝑖𝑛𝑝𝑢𝑡(𝑦))]]  

 K = 1, 2, …, r             

(7) 

where the membership functions are 𝜇𝐶𝐾 , 𝜇𝐴𝐾 , and 𝜇𝐵𝐾   of 

output z for rule k, input x, and y, respectively [36], [40]. 
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Fig. 2. A two-rule max-min composition  [28], [30] 
 

D. Defuzzification 

In this phase the mathematical procedure of converting 
fuzzy set results generated by fuzzy inference mechanism into 
crisp values is implemented. In order to applying this step 
different translators or defuzzifiers are used (e.g., centroid of 
area (COA), center of gravity, mean of the maximums, 
smallest of the maximums) among which the most frequently 
used technique is the centroid of area operator [43]. This 
operator is formulated as follows:   

                           𝑍𝐶𝑂𝐴 =
∫ 𝜇𝐴𝑍

(𝑧)𝑧𝑑𝑧

∫ 𝜇𝐴𝑍
(𝑧)𝑑𝑧

 
(8) 

 

Where z is the fuzzy scheme output and aggregated output 
membership function is assigned as 𝜇𝐴(𝑧). 

IV. CASE STUDY 

In this section, the proposed fuzzy inference-based model 
is applied to a set of statistics on traffic flow over Hungary's 
freeways network. The dataset is collected from the online 
transaction processing server of the Hungarian UD e-toll way 
system, which is considered an electronic system handled by 
NÚSZ that allows supporting the confirmation of legally use 
the network of freeways levying and gathering of the standard 
road sections tollways [41]. The data are contained seven 
variables: freeway name, section name, collected sold e-toll 
over one week in each section of 212 freeways (links) which 
is considered as the number of vehicles, time (per minute), 
day, length of the segments, and the number of the lanes in 
each section. These links include 2446 different segments. 
Each segment length varies from 100 – 18000 meters, and its 
number of lanes differs from 2 - 4. The map of the freeways 
network can be seen in Fig. 3. 

 
Fig. 3. An overview of the chosen network of freeways in the FIS model 

[41] 

A. Proposed model 

In this study, a fuzzy inference model based on the 
Mamdani algorithm implemented on the fuzzy logic toolbox 
R2020b of Matlab is introduced to detect traffic congestion. 
The proposed model is established to compute and predict the 
congestion level in a network of freeways. The architecture of 
the modeled fuzzy inference system with assigned inputs and 
corresponding output in the Matlab environment is depicted 
(Fig.4).  

 

Fig. 4. Schematic illustration of the proposed Fuzzy Inference System (FIS) 

 

The first phase in creating a fuzzy inference model is to 
specify the model's input and output parameters. Three input 
parameters (i.e., length, number of lanes, and flow) and one 
output as the level of congestion (LOC) are selected to be 
employed in the model. The proposed Mamdani fuzzy 
inference algorithm has four main design steps: 

1) Defining input and output linguistic variables and 
their corresponding numerical ranges (Table I and 
II). Input variables are assigned as follows: 

• Flow, which refers to the number of 

vehicles that passes a specific segment per 

time unit (the time interval equals 60 

minutes), 

𝑞 =  
𝑛

𝑇
=  

𝑛

∑ 𝑖𝑛
𝑖=0

 
(9) 

where q is the average number of vehicles 

(n) that pass a section during a unit of time 

(T). 

• Length of each segment of freeway 

network per kilometer.  

• Lane, refers the number of lanes in each 

segment.  

 

Mamdani 

Fuzzy 

Inference 

System                        

(MFIS) 
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TABLE I.  INPUT VARIABLES CLUSTERING RANGES 

Input 
variables 

Numerical 
Ranges 

Linguistic 
term 

Equivalence (impact 
on congestion) 

 

 
 

Flow 

1<F≤300 veh. 

200 ≤ F≤600  
500 ≤F≤ 1000  

800 ≤ F≤ 1400  

1200 ≤F< 2000  

Very low 

Low 
Average 

High 

Very high 

Very small impact 

Small impact 
Steady state 

Hi. increasing impact 

Very high increasing 
impact 

 

 

Length 

0.1 <Le ≤2  

1 ≤ Le≤ 6  

4≤ Le≤ 12  
8 ≤ Le≤ 17  

15 ≤ Le < 19  

Very short 

Short 

Average 
Long 

Very long 

Very high impact 

High impact 

Steady state 
Reducing impact 

High reducing 

impact 

 

Lane 

1 < La ≤ 2 

2 ≤ La ≤ 3 

3 ≤ La < 4 

Narrow 

Average 

Wide 

High increasing impact 

Reducing impact 

High reducing impact 

 
TABLE II.  OUTPUT VARIABLE CLUSTERING RANGES 

Output 

variable 
Ranges Linguistic 

term 

Equivalence  

 

 

 

 

 

 

 

 

 

 

 

 

 

LOC 

 

 

 

 

 

1<LOC ≤ 280 veh. Completely 

congestion 

free 

-IF Flow is very 

low/low/avg. AND Lane is 

narrow/avg./wide AND 

length is 

short/avg./long/very long 

186 ≤ LOC ≤580 

veh. 

 

Congestion 

free 

 

-IF Flow is very 

low/low/avg./high AND 

Lane is narrow/avg./wide 

AND length is 

avg./long/very long  

470≤ LOC ≤940 

veh. 

 

Low 

 

-IF Flow is 

low/avg./high/very high 

AND Lane is narrow 

/avg./wide AND length is 

avg./long/very long  

750≤ LOC≤1200 

veh. 

Stable 

 

-IF Flow is 

low/avg./high/very high 

AND Lane is narrow 

/avg./wide AND length is 

short/avg./long/very long 

1130≤ LOC ≤1500 

veh. 

 

Near 

congestion 

 

-IF Flow is avg./high/very 

high AND Lane is 

narrow/avg./wide AND 

length is length is short/avg. 

1400 ≤ LOC ≤1650 

veh. 

 

Congestion 

 

-IF Flow is high/very high 

AND Lane is narrow/avg. 

AND length is very 

short/short/avg.  

1600≤ LOC <2000 

veh. 

Severe 

congestion 

-IF Flow is very high AND 

Lane is narrow/avg. AND 

length is very short/short 

 

2) Input and output parameters are fuzzified (Table III 
and IV) by triangular and trapezoidal membership 
functions since they capture and represent the 
characteristics of the case study's fuzzy set. 
Preferably, triangular and trapezoidal MFs are 
shown, respectively in Equations 10 and 11: 

  

𝜇𝛬(𝑥) =

{
 
 

 
 
0,                    𝑥 < 𝛼𝑚𝑖𝑛
𝑥−𝛼𝑚𝑖𝑛
𝛽−𝛼𝑚𝑖𝑛

,      𝑥 ∈ (𝛼𝑚𝑖𝑛, 𝛽)

𝛼𝑚𝑎𝑥 − 𝑥

𝛼𝑚𝛼𝑥 − 𝛽
,   𝑥 ∈ (𝛽, 𝛼𝑚𝑎𝑥)

0,                   𝑥 > 𝛼𝑚𝑎𝑥

 

 

 

 

 

 (10) 

 

𝜇𝛬(𝑥) =

{
 
 

 
 
0,                      𝑥 ≤ 𝛼𝑚𝑖𝑛
𝑥−𝛼𝑚𝑖𝑛
𝛽1−𝛼𝑚𝑖𝑛

,      𝑥 ∈ (𝛼𝑚𝑖𝑛 , 𝛽1)

𝛼𝑚𝑎𝑥 − 𝑥

𝛼𝑚𝛼𝑥 − 𝛽2
,   𝑥 ∈ (𝛽2, 𝛼𝑚𝑎𝑥)

0,                     𝑥 ≥ 𝛼𝑚𝑎𝑥

 

 
 

 

(11) 

 

TABLE III. MATHEMATICAL AND GRAPHICAL REPRESENTATION OF THE 

FUZZIFIED INPUT VARIABLES  

Input Membership function  

 
 
 

 

 
 

 

 
 

Flow 

𝜇𝐹𝑙𝑜𝑤−𝑉.𝑙𝑜𝑤(𝑓) = {

0′                           𝑓 > 300
300 − 𝑓

100
, 200 ≤ 𝑓 ≤ 300

1,                            𝑓 < 200

 

𝜇𝐹𝑙𝑜𝑤_𝐿𝑜𝑤(𝑓) =

{
 
 

 
 
0,          (𝑓 < 200)𝑜𝑟(𝑓 > 600)
𝑓 − 200

100
,        200 ≤ 𝑓 ≤ 300

1,                     300 ≤ 𝑓 ≤ 500
600 − 𝑓

100
,        500 ≤ 𝑓 ≤ 600

 

𝜇𝐹𝑙𝑜𝑤_𝐴𝑣𝑔.(𝑓) =

{
 
 

 
 
0,         (𝑓 < 500)𝑜𝑟(𝑓 > 1000)
𝑓 − 500

100
,          500 ≤ 𝑓 ≤ 600

1,                        600 ≤ 𝑓 ≤ 800
1000 − 𝑓

200
,     800 ≤ 𝑓 ≤ 1000

 

𝜇𝐹𝑙𝑜𝑤_𝐻𝑖𝑔ℎ(𝑓) =

{
 
 

 
 
0,          (𝑓 < 800)𝑜𝑟(𝑓 > 1400)
𝑓 − 800

200
,          800 ≤ 𝑓 ≤ 1000

1,                     1000 ≤ 𝑓 ≤ 1200
1400 − 𝑓

200
,     1200 ≤ 𝑓 ≤ 1400

 

𝜇𝐹𝑙𝑜𝑤−𝑉.ℎ𝑖𝑔ℎ(𝑓) = {

0′                                𝑓 < 1200
𝑓 − 1200

200
, 1200 ≤ 𝑓 ≤ 1400

1,                                 𝑓 > 1400

 

 

 
 

 

 
Flow 

MF 

Plot 

 
 
 

 

 

 

 

 

 

 

Length 

 

𝜇𝐿𝑒𝑛𝑔𝑡ℎ−𝑉.𝑠ℎ𝑜𝑟𝑡(𝐿𝐸) = {
0′                           𝐿𝑒 > 2
2 − 𝐿𝑒, 1 ≤ 𝐿𝑒 ≤ 2
1,                            𝐿𝑒 < 1

 

𝜇𝐿𝑒𝑛𝑔𝑡ℎ−𝑆ℎ𝑜𝑟𝑡(𝐿𝑒) =

{
 
 

 
 
0,    (𝐿𝑒 < 1)𝑜𝑟(𝐿𝑒 > 6)
Le − 1,          1 ≤ 𝐿𝑒 ≤ 2
1,                      2 ≤ 𝐿 ≤ 4
6 − 𝐿𝑒

2
,           4 ≤ 𝑓 ≤ 6

 

  

𝜇𝐿𝑒𝑛𝑔𝑡ℎ−𝐴𝑣𝑔.(𝐿𝑒) =

{
 
 

 
 
0,    (𝐿𝑒 < 4)𝑜𝑟(𝐿𝑒 > 12)
𝐿𝑒 − 4

2
,           4 ≤ 𝐿𝑒 ≤ 6

1,                      6 ≤ 𝐿𝑒 ≤ 8
12 − 𝐿𝑒

4
,         8 ≤ 𝑓 ≤ 12

 

𝜇𝐿𝑒𝑛𝑔𝑡ℎ−𝐿𝑜𝑛𝑔(𝐿𝑒) =

{
 
 

 
 
0,      (𝐿𝑒 < 8)𝑜𝑟(𝐿𝑒 > 17)
𝐿𝑒 − 8

4
,           8 ≤ 𝐿𝑒 ≤ 12

1,                    12 ≤ 𝐿𝑒 ≤ 15
17 − 𝐿𝑒

2
,         15 ≤ 𝑓 ≤ 17

 

𝜇𝐿𝑒𝑛𝑔𝑡ℎ−𝑉.𝑙𝑜𝑛𝑔(𝐿𝑒) = {

0′                        𝐿𝑒 < 15
𝐿𝑒 − 15

2
, 15 ≤ 𝐿𝑒 ≤ 17

1,                         𝐿𝑒 > 17

 

 

 

 

 
 

Length 

MF 

Plot 
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Lane  

𝜇𝐿𝑎𝑛𝑒−𝑁𝑎𝑟𝑟𝑜𝑤(𝐿𝑎) = {

0′                                 𝐿𝑎 > 2
2 −  𝐿𝑎

0.5
, 1.5 ≤ 𝐿𝑎 ≤ 2

1,                               𝐿𝑎 < 1.5

 

𝜇Lane_Avg.(𝐿𝑎) = {

0,                      𝐿𝑎 ≤ 1.5
𝐿𝑎 − 1.5, 1.5 < 𝐿𝑎 ≤ 2
3 − La,        2 < 𝐿𝑎 < 3
0,                           𝐿𝑎 ≥ 3

 

𝜇𝐿𝑎𝑛𝑒−𝑊𝑖𝑑𝑒(𝐿𝑎) = {

0′                        𝐿𝑎 < 2.5
𝐿𝑎 − 2.5

0.5
, 2.5 ≤ 𝐿𝑎 ≤ 3

1,                           𝐿𝑎 > 3

 

 

 
 

 

 
Lane 

MF 

Plot 

 

 

TABLE IV. MATHEMATICAL AND GRAPHICAL REPRESENTATION OF THE 

FUZZIFIED OUTPUT VARIABLE 

Output Membership function  

 

 

 
 

 

 
 

 

 

 

 

Level 
of 

Cong. 

(LOC) 

𝜇𝐿𝑂𝐶−𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑙𝑦 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑓𝑟𝑒𝑒 (𝐿𝑂𝐶) = {

0′                                 𝐿𝑂𝐶 > 280
280 − 𝐿𝑂𝐶

94
, 186 ≤ 𝐿𝑂𝐶 ≤ 280

1,                                  𝐿𝑂𝐶 < 186

 

 

𝜇𝐿𝑂𝐶_𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑓𝑟𝑒𝑒 (𝐿𝑂𝐶) =

{
 
 

 
 
0,          (𝐿𝑂𝐶 < 186)𝑜𝑟(𝐿𝑂𝐶 > 580)
𝐿𝑂𝐶 − 186

94
,        186 ≤ 𝐿𝑂𝐶 ≤ 280

1,                            280 ≤ 𝐿𝑂𝐶 ≤ 470
580 − 𝐿𝑂𝐶

110
,        470 ≤ 𝐿𝑂𝐶 ≤ 580

 

𝜇𝐿𝑂𝐶_𝐿𝑜𝑤 (𝐿𝑂𝐶) =

{
 
 

 
 
0,          (𝐿𝑂𝐶 < 470)𝑜𝑟(𝐿𝑂𝐶 > 940)
𝐿𝑂𝐶 − 470

110
,        470 ≤ 𝐿𝑂𝐶 ≤ 580

1,                            580 ≤ 𝐿𝑂𝐶 ≤ 750
940 − 𝐿𝑂𝐶

90
,        750 ≤ 𝐿𝑂𝐶 ≤ 940

 

𝜇𝐿𝑂𝐶_𝑆𝑡𝑎𝑏𝑙𝑒 (𝐿𝑂𝐶) =

{
 
 

 
 
0,           (𝐿𝑂𝐶 < 750)𝑜𝑟(𝐿𝑂𝐶 > 1200)
𝐿𝑂𝐶 − 750

90
,             750 ≤ 𝐿𝑂𝐶 ≤ 940

1,                              940 ≤ 𝐿𝑂𝐶 ≤ 1130
940 − 𝐿𝑂𝐶

90
,        1130 ≤ 𝐿𝑂𝐶 ≤ 1200

 

𝜇𝐿𝑂𝐶_𝑁𝑒𝑎𝑟 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 (𝐿𝑂𝐶) =

{
 
 

 
 
0,                (𝐿𝑂𝐶 < 1130)𝑜𝑟(𝐿𝑂𝐶 > 1500)
𝐿𝑂𝐶 − 1130

70
,             1130 ≤ 𝐿𝑂𝐶 ≤ 1200

1,                                   1200 ≤ 𝐿𝑂𝐶 ≤ 1400
1500 − 𝐿𝑂𝐶

100
,             1400 ≤ 𝐿𝑂𝐶 ≤ 1500

 

𝜇𝐿𝑂𝐶_𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 (𝐿𝑂𝐶) =

{
 
 

 
 
0,                (𝐿𝑂𝐶 < 1400)𝑜𝑟(𝐿𝑂𝐶 > 1650)
𝐿𝑂𝐶 − 1400

100
,             1400 ≤ 𝐿𝑂𝐶 ≤ 1500

1,                                   1500 ≤ 𝐿𝑂𝐶 ≤ 1600
1650 − 𝐿𝑂𝐶

50
,             1600 ≤ 𝐿𝑂𝐶 ≤ 1650

 

𝜇𝐿𝑂𝐶−𝑆𝑒𝑣𝑒𝑟𝑒 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛(𝐿𝑂𝐶) = {

0′                                       𝐿𝑂𝐶 < 1600
𝐿𝑂𝐶 − 1600

50
, 1600 ≤ 𝐿𝑂𝐶 ≤ 1650

1,                                       𝐿𝑂𝐶 > 2000

 

 
 

 

 
LOC 

MF 

Plot 

 

 

 

3) The input-output relationships are defined by if-then 
fuzzy rules. A total of 75 rules were assigned based 
on the available dataset, percentile distribution of the 

data, and experts' judgment. These rules were 
implemented in the Matlab Fuzzy Rule Editor to 
create the inference and nonlinear surface model; 25 
rules of the total of 75 rules are illustrated in the 
Matlab Fuzzy Rule Editor environment in Fig. 5. 

 

Fig. 5. Input-output rules for determining the level of congestion severity 

 

4) Applying COA as the defuzzification operator to 
detect the corresponding action (level of congestion) 
to be executed. This operator is formulated as 
follows:   

𝑍𝐶𝑂𝐴 =
∫ 𝜇𝐴𝑍

(𝑧)𝑧𝑑𝑧

∫ 𝜇𝐴𝑍
(𝑧)𝑑𝑧

 
(12) 

 

where z is the fuzzy system output and aggregated 
output membership function is assigned as 𝜇𝐴(𝑧). 

V. RESULTS 

As it can be observed from the introduced algorithm steps 
in the previous section, determining the level of congestion in 
each segment is derived from three types of available row 
data, including the number of vehicles in a specific time unit 
which passed from a certain point along with the number of 
lanes and length of the given segment. All these input data 
provided approximate indicators to evaluate the segment's 
relative capacity in supplying the created demand that can 
cause alteration in the level of congestion. The obtained 
results illustrate that the proposed fuzzy inference system is 
quite efficient in generalizing nonlinear complex relations 
between congestion levels and the other numerical properties 
of traffic. 

 Schematic illustration of fuzzy inferential mechanism can 
be seen in Fig. 6. The ranges of the input variables are assigned 
as:  

- flow rate from 1 to 2000 vehicles per 60 minutes,  

- length of the segments from 0.1 to 19 km,  

- number of lanes from 1 to 4;  
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also, as the output variable:  

- level of congestion is considered in the range of 1 to 
1875.  

The developed Mamdani model in this study can provide an 
estimation of congestion severity when input data is inserted. 
As a sample of the proposed model application from Fig.6, it 
can be observed that if real-time input parameter properties 
are entered as: flow rate = 253, the segment has two lanes and 
5.16 km length, then the level of congestion (LOC) would be 
predicted as 281, which based on the membership function 
presented in Table IV, is categorized at the level of 
congestion-free. 

 The performed prediction of congestion level was based 
on historical and real-time observations that play a significant 
role in various traffic models [42]. As opposed to conventional 
methods of traffic detection, the proposed mechanism has a 
sophisticated discipline known as approximate reasoning [19], 
[43]  through which exact traffic connected properties (e.g., 
geometric features including junctions, bifurcations, off-
ramps, and on-ramps) that can be assigned in both 
microscopic and mesoscopic types of traffic modeling [44], 
[45] are sacrificed, in order to reach significantly low time and 
computational efforts. Besides, natural linguistic rules form 
the executed model, which is aligned with the general 
concepts of traffic characteristics. Also, the results were 
obtained from a combined description of the congestion state 
because of employing multiple and compound rules in the 
modeled inference system instead of using a single rule.  

 

Fig. 6. Lookup diagram of fuzzy rules of the level of congestion 

 

One of the most significant contributions of the simulated 
results is the fuzzy surface view which can produce practical 
information extracted from the analyzed system's data, for 
example, evaluating correlation and strength of the 
relationship between assigned input and output variables. 
Although the information provided by the fuzzy surface view 
mainly focuses on the correlations of the input-output 
variables, another feature of the provided view is about the 
system reaction rate to the fluctuations caused by the input 
variables and the direction of the alteration effects on the 
output variable. It is a significant advantage since an entirely 
different effectual view of the analyzed system coupled with 
having the capability to evaluate a large number of possible 
scenarios and outcomes at once can be observed by engineers 
without having to infer the system's mathematical 
formulations which conventional control models disable to 
provide. Transparency is one of the main advantages and 
reasons of wide applicability of fuzzy rule-based models. 

 

 The interdependency among input variables and LOC 
derived from the generated rules in the proposed fuzzy 
inference system can be demonstrated by employing a fuzzy 
control surface in a visual perception view (Fig. 7). It shows a 
correlation between LOC and the input variables. It can be 
observed that the most severe alteration takes place in the 
LOC when the length is approximately in the range of 4-6 km 
and the lane number is 2-3 (Fig.7 part I). Also, if the range is 
approximately 1-6 km in the length variable, in each segment 
with an increasing flow rate of more than 200, it can be seen 
that an intensive reaction (around 50% increase) in the LOC 
emerges (Fig.7 part II). Altering the number of lanes has the 
most intensive impact on the LOC. Segments with 3 and 4 
lanes will not experience severe congestion, while increasing 
the flow rate by 200 vehicles in less than two lanes segments 
can increase LOC by more than 50% (Fig.7 part III). 

 Besides its tractability in dealing with ambiguity and 
subjectivity, the above-performed analysis is aligned with 
traffic modeling purposes, i.e., sustainability development, 
infrastructure, and spatial planning [10], [46]. Furthermore, 
various traffic engineering tasks can be supported through the 
presented correlations and relationships among the involved 
variables, such as assessing the effect of increased demand or 
capacity-reducing events (e.g., a lane drop because of 
maintenance) on the traffic flow behavior. In other words, 
since the use of the model is mainly real-time, effects of 
changing in each of the variables in a specific segment on the 
whole system can be observed, particularly in order to, 
providing surveillance of the congestion state in complex 
networks, traffic control, and prevention strategies, further the 
assessment of the impact of new constructions. Moreover, as 
the proposed model is designed mainly based on the available 
research datasets, all applications mentioned above can be 
significantly improved by involving additional accurate traffic 
associated parameters. 
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Fig. 7. Rule surface of LOC for length and lane (I), and length and flow 

(II), and flow and lane (III) 

VI. CONCLUSION 

In this study, the fuzzy rule-based inference is proposed 
for modeling traffic-involved parameters to detect the severity 
of congestion by available row data. The inferential process 
time and complexity are within an appropriate time frame 
based on the computed number of inputs along with the 
number of produced fuzzy rules. Furthermore, the projected 
approach not only allows to recognize and analyze traffic 
congestion with ease, but it also demonstrates effectual 
performance and reliable traffic congestion control system 
with exceptionally high noise acceptance. Such a control 
system can pay the way for creating traffic breakdown-related 
alerts and intelligent early warning systems with its potential 
advantages to deal with traffic-connected problems, 
infrastructure development, and services progression. Besides 
all of the contributions of the proposed fuzzy-based inference 
system (e.g., flexibility, computationally efficiency, dealing 
with imprecision), its characteristic about assuming all of the 
input variables as equal-weighted values on the level of 
congestion needs further improvements, particularly 
concerning associated traffic events which are notoriously 
heterogeneous. Moreover, the used data only applies to one 
week. The accuracy of the fuzzy model can be better 
experienced and estimated if more data is provided to the 
system.  
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