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Abstract—In this paper, we approximate the probable 

maximum (very rare, extremal) values of highly autonomous 

driving sensor signals by reviewing two methods based on 

dynamic time series scaling and multifractal statistics. 

The article is a significantly revised and modified version of 

the conference material ("Determination of extreme values in 

autonomous driving based on multifractals and dynamic 

scaling") presented at the conference "2021 IEEE 15th 

International Symposium on Applied Computational 

Intelligence and Informatics, SACI". 

The method of dynamic scaling is originally derived from 

statistical physics and approximates the critical interface 

phenomena. The time series of the vibration signal of the 

corner radar can be considered as a fractal surface and grow 

appropriately for a given scale-inverse dynamic equation. In 

the second method we initiate, that multifractal statistics can 

be useful in searching for statistical analog time series that 

have a similar multifractal spectrum as the original sensor 

time series. 
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I. INTRODUCTION 

 
Highly autonomous driving (HAD) is expected to will 

have a positive impact on the global transport environment. 
According to the state of research, more than 80% of traffic 
accidents are caused by human error. By replacing the 
human operation with a technical-mathematical solution, it 
is possible to reduce the number of accidents. 

Driver-free vehicles allow, for example, the 
reinterpretation of taxi services and the modernization of 
logistics.  

Nowadays, the development of autonomous vehicles has 
been in full swing for years. OEMs (car manufacturers) 
promise to develop vehicles with a higher degree of 
autonomy in the coming years. 

The driver of an autonomous vehicle can be deactivated, 
it cannot be taken into account by the operator of the control 

operations. As a result, there will be very high reliability 
requirements for safety, reliability and security. 

For a practical interpretation and implementation of the 
safety requirements for self-driving vehicles, it is necessary 
to understand what reliable and safe behavior really means. 
For example, a HAD car must be able to handle traffic 
rules, the geometry and topology of its surroundings, and 
must be able to interpret the meteorological system, but also 
rare, difficult-to-predict road hazards. A strategy must then 
be devised to check that the vehicle has reached actually the 
required level of safety. The problem in the development of 
HAD in the coming years is the release of the systems: how 
the completed hardware-software and algorithm can be put 
on the market and how to sell the system. 

The models used to determine and derive the extreme 
values used to test the HAD system are inherently based on 
various technical interactions, supplemented by the 
probability of possible collision damage. According to the 
current state of science, stochastic, linear operators are used 
to estimate the probability of very rare traffic incidents and 
the possible additional damage resulting from the failure of 
the detection system of the traffic environment [1,2]. 

Safety studies used in the design of the HAD system 
have shown that some test results based on existing 
autonomous driving test environments do not meet the 
extreme sensor values (PES) realized based on stochastic 
models [3,4]. PES is an extreme value for a given sensor 
environment that may occur in the future (8000 hours of 
autonomous driving). Several methods are known in the 
literature for HAD design to determine this value. These 
methods can be divided into two main systems: analytical 
and stochastic (Monte-Carlo) [1].  

According to the current state of science and technique, 
methods need to be developed for estimating the 
probability of extreme sensor values that allow the for 
OEMs development of a probability-based sensor event 
standard that would lead to a methodology that allows a 
generalized definition of risk and cost [10]. HAD research 
projects have derived that existing methods are not suitable 
for predicting extreme sensor values. 

The reason for the discrepancy may be that the methods 
used to derive the extreme values of the sensor time series 
result from standard linear statistical techniques that cannot 
be used when the object or phenomenon to be detected is 
essentially nonlinear. 
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One previous analysis of the dynamic characteristics of 
time series of autonomous sensor signals was performed by 
Bianchi et al. [6], through the study of the chaotic attractor 
analysis [7,8]. The dimension of the attractor algebra found 
was low and not an integer value: fractal, indicating that the 
system can be described with high probability by nonlinear 
functions of some variables that also apply to the extreme 
values of the sensor time series. The fact that the correlation 
dimension found was fractal predicts that this function, also 
called an attractor in nonlinear dynamics [2], may show 
chaotic behavior under  

given initial and circumferential conditions. The 
existence of a low-dimensional mapping of attractor 
algebra may suggest the extreme-value prediction, which 
means short-term prediction possibilities in time series 
mathematics using some nonlinear model [3-8]. 

In deep learning technology is regularly used to predict 
short-term, extreme values of chaotic sensor time series 
mapping a nonlinear model [9]. We obtained good sensor 
event predictions using probabilistic neural networks [21, 
22], and in a previous work we did not support the 
hypothesis that random fluctuations in the time series of 
sensor values are caused by linear Gaussian noise [23, 24] 

This article analyzes the extremes of time series of corner 
radar sensors used in the HAD system with the aim of 
comparing two different nonlinear techniques:  

• dynamic scaling and  

• multifractal formalism.  

Dynamic scaling is a procedure developed in statistical 
physics for the characterization and quantitative analysis of 
physical interfaces. In general, interfaces can be formed in 
three processes:  

• interfaces grow with the addition of new 
substances,  

• substances that detach or dissolve from the surface 
or interface,  

• and finally processes that lead to spontaneous 
processes. 

In the present project, in which we present the tests 
applied in the Autonomous Driving System of the 
University of Óbuda, the corner radar sensor time series 
(Figures 1 and 2) plays the role of the interface, and the 
second type of process (materials removed from the surface 
or interface) prevails. Due to the importance of HAD time 
series analysis, it is a challenge to characterize the extremal 
value of time series and the dynamics of such extremes, and 
to develop an efficient approach to embedded systems to 
understand the formation of time series. Recently, 
significant progress has been made in understanding 
interfaces through the application of fractal concepts and 
the development of the theory of dynamic scaling. The 
dynamic scaling introduced in fractal growth has become 
an indispensable tool for the characterization and fractal-
based, nonlinear analysis of the morphology and evolution 
of interfaces and can also be applied in the theoretical study 
of surfaces. 

A very important step in identifying the extremal values 
of the HAD corner radar sensor sequence would be to 
examine the correlation associated with fluctuations in 
sensor extremes. The Hurst exponent (H) and the Hölder 

exponent (α) are widely used to measure the persistence of 
a statistical phenomenon [18]. H <0.5 points is an anti-
persistent time series. It characterizes a system that can also 
be used in a corner radar system that reverses more often 
and travels less distance than the components of a random 
system. 0.5 < H <1 means that a persistent time series is 
analyzed. This system has significant memory  

effects in the study of extremes: what happens now 
affects the future, so there is a very deep dependence on 
initial conditions. Persistent processes are common in 
nature, but they also play an important role in self-driving 
[19]. If the distribution is homogeneous, then there is a 
unique α = H, but if not, there are multiple α exponents. The 
most common α will characterize the series and will play as 
a Hurst exponent. A very efficient method for determining 
the f(α) spectra of autonomous corner radar sensors is based 
on the multifractal analysis tool introduced in the early 
eighties. 

Theoretical evidence gathered in recent years shows that 
the time series of the corner radar sensor, which is preferred 
for autonomous driving, have multifractal scaling 
properties such as high variability, intermittency, and 
multiscaling [7,8,9,10]. These studies suggest that 
multifractal scaling of sensor time series can be a valuable 
tool for characterizing extremal sensor value, i.e., searching 
for statistically physically similar time series that are much 
more “extremal” but have the same multifractal spectrum. 

In this journal article, we review the basic ideas of 
dynamic scaling and multifractal analysis, as well as how 
to characterize the maximum value of autonomous radar 
sensor time series. To illustrate the application of these 
ideas, we then use data from 13593 autonomous radar 
sensors in the HAD database for a scenario (Figure 2). 

In the Chapter II we are dealing with fractal dynamic 
scaling, with the first-order consideration of radar 
extremities. The methods for multifractal analysis are 
described in Chapter III. This is followed in Chapter IV by 
the first results on corner radar, and in Chapter V by a 
summary and summary of future work. 

II. FRACTAL DYNAMIC SCALING 

Few indicators of HAD deal with time series and their 
nonlinear properties in many systems. 

In certain applications, the goal is to produce a time 
series with a specific physical or technical property, but 
often time series are inherent in industrial and natural 
processes. In fact, Mandelbrot [15] pointed out that some 
time series are best approximated by a fractal geometry 
system. This recognition led to the development of a 
dynamic scaling system that describes not only a given 
morphology but also the internal dynamics of time series, 
including extremes. In this approach, we consider the time 
evolution of time series in a d-dimensional space, starting 
from an initial corner radar time series. 

The essence of the method is the physical experience that 
growing surface-instabilities with the same scaling factor 
are physically identical, i.e. they can be scaled together. 

The increase of the instabilities is realized by analyzing 
the morphology of the time series. As a first step, the active 
zone of the time series, or the part of the time series 
responsible for the fluctuations, is determined. 
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In our case, the time series of the vertical vibrations of 
the corner radar signal  can be described by the function 
Q(r,t), which gives the autonomous radar sensor at position 
r and at time t. 

 

 

Figure 1.  The corner radar sensor ultimately measures distance, but 

taking the parameters shown at the top of the figure into account is an 

essential part of sensor detection accuracy. In our Óbuda University 
Autonomous Driving research project, we look for possible extreme 

values of vertical vibration values of the corner radar issues. 

 

 

Let the average height of the time series at time t be [1]: 

𝑄− = 〈𝑄(𝑟, 𝑡)〉 =
∑ 𝑄(𝑟,𝑡)𝑟

𝐿𝑑−1   (1) 

where denotes the average over r. 

The measurement time series of the sensors fluctuates 
around this average value, and the root mean square value 
of these fluctuations w(L,t) is a quantitative measure of the 
width of the time series and is as follows: 

𝑤(𝐿, 𝑡) = √[〈𝑄2(𝑟, 𝑡)〉 − 〈𝑄(𝑟, 𝑡)〉2] (2) 

The roughness, β of the time-series can be defined as: 

𝑤(𝐿, 𝑡) ≈ 𝑡𝛽  (3) 

that is the exponent β describes the time-series 
fluctuations growth in time [1]. 

The maximum spatial measure is the length of the time 
series by which these fluctuations can increase in the d-1 
dimensions.  

For seeking the extremum, the corner radar measures has 
uncertainties, which means that an additional signal, the 
vibration time series must also be taken into account. 

Based on the vertical vibration, the extremity of the 
system can be inferred, because as soon as the fluctuations 
in the sensor values reach this length, they can no longer 
increase, and the “surfaces” of the time series reach a steady 
state, characterized by a constant latitude value. From the 
fractality, we can assume that the surface of the time series 
is scale-varying, and the dynamic saturation value of the 
width achieved over a long period of time is expected to be 
power-law dependent in L2 : 

𝑤(𝐿, 𝑡 → ∞) ≈ 𝐿𝛼  (4) 

with the characteristic exponent α [6]. 

In a persistent, steady state, the vertical vibration time 
series surface is best described by self-affine and fractal 
geometry. According to the geometry, the morphology is 
quantified with α, which is equivalent to the Hurst exponent 
H. The dependence of w(L,t) on t and L can be combined 
with Equations (3) and (4) into a single expression 
representing the dynamic scaling 

𝑤𝐿, 𝑡) = 𝐿𝛼𝑓 (
𝑡

𝐿

∝
𝛽

)  (5) 

where the scaling function 𝑓(𝑥) ≈ 𝑥𝛽for x ≪ 1 [7]. 

Going further in the analysis, the analyzed width of the 
vertical vibration sensor time series is independent of t and 
saturates to a constant value, taking into account the metrics 
of fractal geometry. At this limit, w(L,t) varies according to 
Equation (4), and the scaling function f (x) is a constant. 
The dynamic scaling identity of Equation (5) means that the 
representations of w(L,t) for different L values as a function 
Equation (5) fall on a single curve.  
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Figure 2.  Vertical vibration of the corner radar time series. The radar sensor ultimately measures distance, but taking parameters shown in Figure 1 

into account is an essential part of sensor detection accuracy. 

The extremum value based on the dynamic scaling 
behavior for sensor time series has been observed in models 
with different dimensions and in several experiments [8], 
and the extremum can be determined based on the α, β 
coefficients. 

Consider, for example, the height difference correlation 
function c(r,t) defined by 

𝑐(𝑟, 𝑡) = 〈|𝑄−(𝑟′, 𝑡′) − 𝑄−(𝑟 + 𝑟′, 𝑡+𝑡′)|2〉 (6) 

where Q(r,t) is the time series of the radar sensor vertical 
vibration, responsible for changing the probability of a 
vehicle collision. 

On the basis of the dynamic scaling form (5), for r≪L 
the correlation functions c(r,0) is expected to have the 
following scaling form: 

𝑐(𝑟, 0) ≈ 𝑟2𝛼𝑓𝑜𝑟 𝑟 ≪ 𝐿   (7) 

and for fixed scales as: 

𝑐(𝑟, 0) ≈ 𝑟2𝛽𝑓𝑜𝑟 𝑡 ≪  𝜏  (8) 

The scaling behaviors of Eqs.(7)-(8) persist as long as r 

is smaller than the length L and t is smaller than 𝑡 ≈ 𝐿
𝛼

𝛽 

Within these limits the correlation functions  

𝑐(𝑟 → ∞, 0) and 𝑐(0, 𝑡 → ∞) 

saturate to constant value that depend on L. [9,10]. 

The correlation diagram shows the strength of each 
element of the vertical vibration time series. The diagram 
was realized by recording the correlation of a large number 

of 128-element ring buffers realized from the original time 
series.  

Figure 3 shows the correlation diagram c(r,t) of the HAD 
vertical vibration signal. The dynamic scaling behavior of 
the vibrations characteristic of the autonomous sensor time 
series and the exponents α and β allow the determination of 
the extremal (probable maximum) sensor value. [12]. From 
the figure, which is shown in the form of a scalogram, the 
time coordinate of the extreme value is simply conspicuous. 
In this case, it is called the extremum, which takes an 
extreme value with the correlations. 

It can be seen from the figure that based on the first tests, 
no significant difference can be found in the correlation 
diagram, they can be easily scaled into each other. The 
essence of the test was to take into account 4 participants 
and 12 participants (objects to be detected, which also play 
a role in vertical vibration). and considering the entropy-
changing effect of the increased information content in the 
correlation. 

III. MULTIFRACTAL ANALYSIS 

The main features of self-similar fractal objects, such as 
time series of vibration signal of corner radar measurement 
results, are their scaling properties related to magnification 
invariance. For uniform fractals, a scaling  exponent called 
the fractal dimension uniquely describes the scaling. 
However, most traffic node dynamics occurring fractal 
objects have multifractal properties. The traffic node 
participants can be more fully characterized by the 
spectrum of fractal exponents D(q), where q is a real 
number, the so-called generalized dimension, where the 
fractal dimension is equal to D(0), is usually called the 
multifractal spectrum. [13]. 
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Figure 3.  Óbuda University Autonomous Driving Software Radar correlation function c(r,t) for 4 and 12 traffic node participants, the difference is 

not conspicuous 

The general goal of multifractal formalism is to 
determine the singularity spectrum f(α) of a μ measure 
[14,15]. The Haussdorff dimension of each point [15] is 
associated with the singularity exponent α, which gives an 
idea of the strength of the singularity. 

𝑁𝛼(𝜀) ≈ 𝜀𝑓(𝛼)  (9) 

where 𝑁𝛼(𝜀) the number of boxes needed to cover the 
measure and ε is the size of each box [16]. 

A partition function Z can be defined from this spectrum 
(it is the same model as the thermodynamic one). 

𝑍(𝑞, 𝜀) = ∑ 𝜇𝜄
𝑞𝑁(↑𝜀)

𝜄=1 (𝜀) ≈ 𝜖𝜏(𝑞) for 𝜖 →  0 (10) 

where τ(q) is a spectrum which arouses by Legendre 
transforming the f (α) singularity spectrum. The spectrum 
of generalized fractal dimensions: D; is obtained from the 
spectrum τ(q) 

𝐷𝑞 =  
𝜏(𝑞)

𝑞−1
  (11) 

The capacity or box dimension of the support of the 
distribution is given by 

𝐷0 =  𝑓(𝛼(0)) = −𝜏(0) 

𝐷1 =  𝑓(𝛼(1)) = 𝛼(1) 

It is proportional to the scale of information 
dissemination and is called the information dimension. For 
q>2, the correlation integrals Dq and q-point are related. 

A widely used method for calculating the multifractal 
spectrum can be done with q generally between qmin and 
qmax in 0.2 steps. In this range, the error bands of the 
multifractal spectra of the corner radar time series values 
used in autonomous guidance developments are quite small 
(see Figure 3 below), so this q range is suitable for 
characterizing the time series of autonomous sensors with 
multifractal exponents. 

 

Figure 4.  Óbuda University Autonomous Driving Software Radar 

multifractal spectra of the radar sensor vertical vibration, green traffic 
node with 12 participants, black 4 participants. Analysis with 12 

participants is more widespread with a multifractal property, indicating 

a greater uncertainty effect on detection than. 

IV. METHOD, FIRST NUMERICAL RESULTS 

The embedded version practical procedure for 
calculating extreme values for example for the HAD radar 
experiments could be seen of the Figure 5. 
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• Collecting 128 HAD vertical vibration corner  
radar values into a R ringbuffer; 

• In the microcontroller unit, determining the 
multifractal spectra of R based on the α and β 
parameters. 

• Generating N samples from the  α, β  measure (N= 
1024, depends on the microcontroller 
environment) 

• Determining the supremum of the signal amplitude 
of the signals 

• The supremum of the possible maximum value of 
a HAD corner radar signal for the measure w and 
samples N 

 

 

Figure 5.  Óbuda University Autonomous Driving Software Radar 

analysis: extreme value prediction flow chart 

With help of dynamic scaling if r=124 (ms) then c(124,t) 

= 82 and then when t→ ∞  is and  𝛼 =
1 lg(124)

2 lg(82)
=

0.5269 → then the extreme value 

𝑤 ≈ 147630.5269 = 157.4 [Radar_unit] 

With help of multifractal analysis, looking for the similar 
time series own similar spectra, the extremum value is 

w=129.1 [Radar_unit]. 

Determination of extreme values in autonomous driving 
based on multifractals and dynamic scaling, however this 
iteration method is very time consuming. 

 

V. CONCLUSIONS, FUTURE WORK 

Within the framework of the Self-Driving Automotive 
Platform Project running at the University of Óbuda, we 
analyzed nonlinear methods for predicting the probable 
maximums, the so called extremes of autonomous driving 
vibration signal of the corner radar sensor time series. 

The first conclusions 

• Determining the extreme value of a radar signal 
can be significantly simplified by nonlinear time 
series analysis, thereby making it embedded 
suitable. 

• The need for testing can be reduced if collisions 
can be predicted by analyzing the extreme values 
of the radar sensor parameters. 

• New test results can be integrated into the system 
constantly. 

The next phase of the project is the fixed-point Matlab 
C++ Code Generation and its testing with real data [17-20]. 
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