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Abstract—In this paper, we present the controller which glob-
ally stabilizes a non-stationary motion of a serial robot manipula-
tor with revolute joints without velocity measurements. A family
of desired manipulator motions is considered such that the first
vertical link of the manipulator performs a given rotation, and
the remaining links retain the given relative angular positions.
It is proved that such motions of the manipulator can be made
globally asymptotically stable using dynamic position feedback.
The problem is solved taking into account the periodicity of the
dynamics equations along the angular coordinates of the links. As
an example, a numerical simulation of the three-link manipulator
motion under the constructed controller is presented.

Index Terms—stabilization control problem, serial robot ma-
nipulator, revolute joint, dynamic position feedback, Lyapunov
function, cylindrical phase space

I. INTRODUCTION

In control theory, trajectory tracking is a fundamental prob-
lem. Trajectory tracking of a multi-link robot manipulators is
considered as challenging control problem due to nonlinearity
and non-stationarity of the dynamics equations. The main
approach to the solution of the trajectory tracking control
problem for a serial robot manipulator is the construction
of proportional derivative (PD) controller with feedforward
[1], [2]. Note that the use of a PD controller requires the
position and velocity measurements of the manipulator links.
In practice, the use of tachometers is fraught with difficulties.
This is, firstly, the noise of the signals of the measured
speeds, and secondly, the installation of tachometers makes
the robot heavier and increases its cost. In addition, in some
practically important tasks, for example the installation of
tachometers is impossible when the robot operates in an
aggressive environment, in a hot cell, etc.

The majority of work for control design of robotic manipu-
lators without velocity measurements uses the dynamic filters,
see [2]–[5]. For results related to the use of velocity observers
see [6], [7] and for nonlinear proportional integral controllers
and Volterra integro-differential equations see [8]–[12]. Due to

the complexity of the problem, results on the global trajectory
tracking of robot manipulators without velocity measurements
are scarce. Note that the problem on global output trajectory
tracking control of Euler-Lagrange systems has been solved
in [3] based on Lyapunov function method.

Motivated by the authors’ early works for the trajectory
tracking control problem of multi-link robot manipulators [13],
[14], in this paper, we give the solution to the global trajectory
tracking control problem without velocity measurements for
the revolute joined robotic arms with a vertical first link. The
key contributions of our paper can be written as follows:

1) We use the periodicity property of the robotic manipu-
lators equipped with revolute joints. Due to this property, we
construct the dynamic position feedback controller which is
bounded in position term and ensures the global attractivity of
the reference trajectory in a cylindrical phase space.

2) We ensure the global tracking of reference trajectories
such that the first link rotation angle is unbounded and
twice continuously differentiable function with both deriva-
tives bounded, and other link rotation angles are constant.

Throughout this paper, the following notation is used.
Symbol | · | indicates the vector norm in Rn. Symbol ∥ · ∥
denotes the operator matrix norm corresponding to the vector
norm | · |. λmin(·) and λmax(·) denote the smallest and largest
eigenvalues of some matrix respectively. Symbol K denotes
the Hanh functions class.

The paper is organized as follows. In Section II we present
the mathematical model of a robotic arm and define the
problem setting. Our main result is stated in Section III.
Example of a motion control for a three-link robot manipulator
that illustrates our main results is presented in Section IV.
Conclusions are provided in Section V.
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II. MATHEMATICAL MODEL OF A ROBOTIC ARM AND
PROBLEM FORMULATION

We consider serial robotic arms described by Euler-
Lagrange equations such as

A(q)q̈ + C(q, q̇)q̇ + g(q) = u, (1)

where q ∈ Rn, q̇ ∈ Rn, and q̈ ∈ Rn are the vectors of joint
rotation angles, angular velocities, and angular accelerations
respectively, A(q) ∈ Rn×n is the inertia matrix, C(q, q̇) ∈
Rn×n is the matrix of Coriolis and centrifugal terms, g(q) ∈
Rn represents the gravitational torques, u ∈ Rn is the vector
of control torques.

Consider some properties of the robotic arms (1).
1. The matrix A(q) satisfies the following inequalities

∥A(q)∥ ≤ d1 ∀q ∈ Rn,
d2 ≤ λmin(A(q)) ≤ λmax(A(q)) ≤ d3 ∀q ∈ Rn,

where d1, d2, and d3 are some positive reals.
2. The following holds

Ȧ(q(t)) = C(q(t), q̇(t)) + CT (q(t), q̇(t))
∀q ∈ C1, q : [0,+∞) → Rn.

3. ∀e1, e2 ∈ Rn, the Coriolis matrix C(e1, e2) satisfies the
following inequalities

λmax(C(e1, e2) + CT (e1, e2)) ≤ λc1∥e2∥,
∥C(e1, e2)∥ ≤ λc2∥e2∥,

where λc1 > 0 and λc2 > 0 are some constants.
The focus of our paper is on the following properties of the

revolute joined robotic arms with a vertical first link.
4. The inertia matrix A(q) and potential energy Π(q) of the

manipulator do not depend on the first link rotation angle. This
angle is said to be a cyclic coordinate and the rotation angles
of the other links are said to be positional ones.

5. The matrices A(q), C(q, q̇) and the vector g(q) in (1) are
periodic functions of the variables q1, q2, . . . , qn with some
periods hi > 0 (i = 1, 2, . . . , n) respectively. So, if u = 0,
then, the system (1) has not only one equilibrium position
(q, q̇) = (0, 0) but a whole set of equilibrium positions (q, q̇)
such as q = (h1k1, h2k2, . . . , hnkn)

T , q̇ = 0, where kj ∈ Z,
j = 1, 2, . . . , n.

For the mechanical system (1) assume that the output vector
contains only link positions. Let find a position feedback
controller u which moves the manipulator (1) from any initial
position with any initial velocity to track a desired trajectory.
Let us mathematically formulate the control problem.

Define the set Q of all desired trajectories of (1) such as

Q = {qr(t) : [t0,+∞) → Rn :
∥q̇r1(t)∥ ≤ qm1, ∥q̈r1(t)∥ ≤ qm2,
qri = constant, i = 2, 3, . . . , n },

(2)

where qr1(t) is a twice differentiable function, qmi =
constant > 0 (i = 1, 2), t0 = constant ≥ 0.

The problem consists in constructing a controller u =
u(t, q(t), q(t+s)) (s ∈ [−t, 0]) such that the desired trajectory
qr(t) ∈ Q of the manipulator (1) is uniformly asymptotically
stable and globally attractive.

III. ROBOTIC ARM TRAJECTORY TRACKING

Choose some desired trajectory qr(t) ∈ Q and denote the
tracking errors as follows

eq = q − qr(t), ėq = q̇ − q̇r(t). (3)

From (1) one can obtain the error dynamic equations

Ast(eq)ëq + Cst(eq, 2q̇r(t) + ėq)ėq = u− ur(t, eq), (4)

where
Ast(eq) = A(eq + qr(t)),

Cst(eq, x) = C(eq + qr(t), x),
ur(t, eq) = A(qr(t) + eq)q̈r(t)

+C(qr(t) + eq, q̇r(t))q̇r(t) + g(qr(t) + eq).

(5)

Let us introduce a cylindrical phase space for (4) such as

{(eq, ėq) ∈ Kn × Rn},

where Kn is given by

Kn = {x ∈ Rn : x1(modh1), x2(modh2), . . . , xn(modhn)}.

Consider the controller u such as follows
u = ur(t, eq) + ust(eq, x),

ust(eq, x) = −Kpp(eq)−Kxx,
ẋ = −a(x+ bėq),

(6)

where a = constant > 0 and b = constant > 0,
Kp,Kx ∈ Rn×n are some gain constant matrices, x =
x(t, t0, eq0, ėq0, x0) is a solution of a differential equation
from (6), p = p(eq), p : Rn → Rn is a continuously
differentiable function such that p(0) = 0 and p(eq) =
(p1(eq1), p2(eq2), . . . , pn(eqn))

T .
Using the integration by parts formula one can obtain the

solution x(t, t0, x0) of an ordinary differential equation in (6)
with position measurements only. So, one can obtain

x(t, t0, eq0, ėq0, x0) = x0e
−a(t−t0) − ab(eq(t)

−e−a(t−t0)eq0 + a2b
t∫

t0

eq(s)e
−a(t−s)ds).

(7)

Using (4) and (6), one can easily obtain the closed-loop
system such as

Ast(eq)ëq + Cst(eq, 2q̇r(t) + ėq)ėq
+Kpp(eq) +Kxx = 0,

ẋ = −a(x+ bėq).
(8)

Note that using (7) one can obtain the first equation of (8)
is functional differential [15].

The equilibrium positions of (8) are contained in the set

P = {(eq, ėq, x) ∈ Rn×Rn×Rn : p(eq) = 0, ėq = 0, x = 0}.
(9)

Define the subset of (9) as follows

S = {(eq, ėq, x) ∈ Rn × Rn × Rn :
s(eq) = 0, ėq = 0, x = 0}. (10)

where s(eq) = (s1(eq1), s2(eq2), . . . , sn(eqn))
T , sj(eqj) =

eqj∫
0

pj(z)dz, j = 1, n.
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Consider the following definitions of global attractivity,
uniform stability, and uniform asymptotic stability properties
of the sets (9) and (10).

Definition 1. The solution set (9) of the closed-loop
system (8) is said to be globally attractive if (∀ε > 0
)(∀t0 ≥ 0 ) (∀(eq0, ėq0, x0)

T ∈ Rn × Rn × Rn) (∃σ > 0 )
(∀t ≥ t0 + σ) ∥(p(eq(t, t0, eq0, ėq0, x0)), ėq(t, t0, eq0, ėq0, x0),
x(t, t0, eq0, ėq0, x0))

T ∥ < ε.
Definition 2. The solution set (10) of the closed-loop system

(8) is said to be uniformly stable if (∀ε > 0 ) (∃δ = δ(ε) > 0
) (∀t0 ≥ 0) (∀(eq0, ėq0, y0) ∈ {(x, ėq, y) ∈ Rn × Rn × Rn:
∥(p(eq), ėq, x)T ∥ < δ ) (∀t ≥ t0 ) ∥(s(eq(t, t0, eq0, ėq0, x0)),
ėq(t, t0, eq0, ėq0, x0), x(t, t0, eq0, ėq0, x0))

T ∥ < ε.
Definition 3. The solution set (10) of the closed-loop

system (8) is said to be uniformly asymptotically sta-
ble if it is uniformly stable and uniformly attractive. The
uniform attractivity property seems that (∃∆ > 0 )
(∀ε > 0 ) (∃σ > 0 ) (∀t0 ≥ 0) (∀(eq0, ėq0, x0) ∈
{(eq, ėq, x) ∈ Rn × Rn × Rn: ∥(p(eq), ėq, x)T ∥ < ∆ )
(∀t ≥ σ+t0 ) ∥(s(eq(t, t0, eq0, ėq0, x0)), ėq(t, t0, eq0, ėq0, x0),
x(t, t0, eq0, ėq0, x0))

T ∥ < ε.
The following theorem presents the main contribution of

this paper.
Theorem 1. Let the controller (6) be such as

Kp = wE, Kx = −abE, (11)

where w, a and b are some positive constants.
Then, the solution set P of the closed-loop system (8)

is globally attractive and the solution set S is uniformly
asymptotically stable.

Proof.
Consider the Lyapunov function candidate V = V (eq, ėq, x)

such as follows

V = 1
2 (ėq)

TAst(eq)ėq + w
n∑

i=1

si(eqi) +
1
2x

Tx. (12)

Note that V (eq, ėq, x) ≥ 0 ∀(t, eq, ėq, x) ∈ R×Rn ×Rn ×
Rn. Moreover, there exists a function ω1 ∈ K such that

V (eq, ėq, x) ≥ ω1(||(s(eq), ėq, x)T ||). (13)

The time derivative of the Lyapunov function candidate V
is calculated as

V̇ = 1
2 (ėq)

T Ȧst(eq)ėq + (ėq)
TAst(eq) (ëq)

+w(p(eq))
T ėq + xT ẋ

= 1
2 (ėq)

T Ȧst(eq)(ėq) + (ėq)
T

×(−Cst(eq, 2q̇r(t) + ėq)ėq −Kpp(eq)−Kxx)
+w(p(eq))

T ėq − axTx− abėTq x.

(14)

From (14), one can obtain

V̇ = (ėq)
T (Cst(eq,−q̇r(t))ėq

+pT (eq)(wE −Kp)ėq
+xT (−abE −Kx)ėq − axTx.

(15)

In can easily see that (ėq)T (Cst(eq,−q̇r(t))ėq = 0. Then,
from (15) using (11), one can get the following inequality

V̇ = −axTx ≤ 0. (16)

The set {V̇ = 0} consists of the solutions of (8) such that
{x = 0}. So, from (8) one can see that such solutions satisfy
the following

ėq = 0, p(eq) = 0. (17)

Thus, one can conclude that the solution set (9) of (8) is
globally attractive.

Note now that the function V = V (eq, ėq, x) satisfies the
inequalities

ω1(||(s(eq), ėq, x)T ||) ≤ V ≤ ω2(||(s(eq), ėq, x)T ||), (18)

where ω1, ω2 ∈ K.
Then, using (18) and Lyapunov stability theory, one can

obtain that the solution set (10) is uniformly asymptotically
stable. This completes the proof.

Note that the coefficients in (11) can be chosen as any
positive constants, their value affects the rate of convergence
of the real motion of the manipulator to the desired one.

Note also that the global trajectory control problem for
robotic manipulators has been solved in [3]. The main differ-
ences between our result and the known one [3] are as follows.
1. In our paper, unbounded time functions can be chosen as
reference trajectories. 2. In our paper, the problem has been
solved in a cylindrical phase space, which made it possible
to use a bounded proportional term in the controller. 3. The
conditions of Theorem 1 do not coincide with ones from [3],
and these conditions are not a special case of ones from [3].

IV. GLOBAL TRACKING OF A 3-DOF ROBOTIC
MANIPULATOR

Consider the performance of the controller (6) for a 3-DOF
robotic arm like as PUMA-560 (see, Fig. 1).

Fig. 1. Scheme of a 3-DOF robotic arm

Assume that the generalized coordinates q1 = φ1, q2 = φ2,
and q3 = φ3 are the angular displacements of the cylindrical
joints O1, O2, and O3 respectively. The dynamics of a 3-DOF
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serial robot manipulator with cylindrical joints is defined by
(1).

The components aij of A(q) are given by:

a11 = I1 +m2l
2
c2 sin

2(q2) +m4(l2 sin(q2) + lc3 sin(q3))
2,

a12 = a13 = a21 = a31 = 0, a22 = m2l
2
c2 +m3l

2
2,

a23 = a32 = m4l2lc3 cos(q2 − q3)/2, a33 = m4l
2
c3.

where l2 is the length of the second link; mj is the mass of
the link j; m0 is the mass of a load; m4 = m0+m3; I1 is the
inertia moment of the first link with respect to Oz; lc2 and lc3
are the lengths of the intervals between the mass centers of
the second link and the third one with a load and the rotation
axes of these links accordingly.

The components cij of C(q, q̇) are given by:

c11 = (m2l
2
c2 +m4l

2
2) sin(2q2)q̇2/2

+m4l2lc3(sin(q2) cos(q3)q̇3 + cos(q2) sin(q3)q̇2)
+m4l

2
c3 sin(2q3)q̇3/2,

c12 = −c21 = (m2l
2
c2 +m4l

2
2) sin(2q2)q̇1/2

+m4l2lc3 sin(q3) cos(q2)q̇1,
c13 = −c31 = m4l2lc3 sin(q2) cos(q3)q̇1

+m4l
2
c3 sin(2q3)q̇1/2,

c22 = c33 = 0, c23 = m4l2lc3 sin(q2 − q3)q̇3/2,
c32 = −m4l2lc3 sin(q2 − q3)q̇2/2.

The components gj , j = 1, 2, 3 of the vector g(q) are as
follows:

g1 = 0, g2 = (m2lc2 +m4l2)g sin q2,
g3 = m4lc3g sin q3.

The functions pj : R → R, j = 1, 3 are given by

pj(eqj) = sin
(eqj

2

)
, j = 1, 3.

The functions sj : R → R, j = 1, 3 are given by

si(eqj) = 2
(
1− cos

(eqj
2

))
, j = 1, 3.

One can easily see that the sets P and S can be written as

P = {(eq, ėq, x) ∈ R3 × R3 × R3 :
eqj = 2πkj (j = 1, 3), kj ∈ Z, ėq = 0, x = 0},

S = {(eq, ėq, x) ∈ R3 × R3 × R3 :
eqj = 4πkj (j = 1, 3), kj ∈ Z, ėq = 0, x = 0}.

The robot parameters are given as

I1 = 0.1 kg · m2,
m2 = 13.8 kg, m3 = 4.9 kg, m0 = 3.1 kg,

l2 = 1.6m, lc2 = 0.7m, r3 = 0.5m.

The desired trajectory is chosen as

q1r(t) = (3t) rad, q2r = π/2 rad, q3r = π/4 rad.

The controller is given by (6). The parameters of (6) are
chosen such as

a = 10, b = 1, Kp = 2E, Kx = −10E. (19)

Let the initial state and velocity of the manipulator be such
as

q1(0) = 3.0 + q1r(0) rad, q2(0) = −2.0 + q2r rad ,
q3(0) = 2.1 + q3r rad,

q̇1(0) = 40 rad/s, q̇2(0) = −35 rad/s,
q̇3(0) = 50 rad/s.

The simulation has been performed using Scilab 5.5.2
platform.

Figs. 2 – 4 show the tracking process for the desired
trajectory. One can easily see the asymptotic convergence of
the links trajectories to the desired ones plus 4πz, where
z = (z1, z2, z3)

T , zj ∈ Z, j = 1, 2, 3.

Fig. 2. Desired and actual angular coordinate for the first joint.

Fig. 3. Desired and actual angular coordinate for the second joint.

In Fig. 5 the time evolution of the stabilizing control torques
has been shown. Thus, it can be seen from Figs. 2 – 4 that
the solution to the global trajectory tracking control problem
is obtained.
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Fig. 4. Desired and actual angular coordinate for the third joint.

Fig. 5. Stabilizing control torques.

V. CONCLUSION

In this paper we have presented results that justify the design
of a dynamic position feedback controller based on Lyapunov
function method for a robotic arm trajectory tracking without
velocity measurements. The first-order dynamic filter has been
designed in order to compensate the absence of velocity mea-
surements. We have shown that the controller with arbitrary
small gain matrices provides the uniform asymptotic stability
and global attractivity properties for the reference trajectories
of a serial robot manipulator with revolute joints such that
the first link rotates around vertical line and other links hold
constant relative positions. It has been proved that the global
trajectory tracking holds in a cylindrical phase space. In other

words, from any initial state at any initial velocity, each link of
the manipulator tends asymptotically to the motion displaced
by a multiple of 2π from a desired one. The values of the gain
matrices affect the rate of the real motion convergence to the
given one of the manipulator. The theoretical results that we
have presented for a multi-link robot manipulator have been
demonstrated in numerical simulation of a three-link robotic
arm like as PUMA-560.
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