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Abstract—The controller design for linear time-invariant state
space systems seems to be straightforward and well established.
This is not true for static output feedback control, which is
still a challenging task. This paper deals with controller design
based on eigenvalue assignment. We consider the placement of
distinct as well as multiple real eigenvalues or complex conjugate
pairs. The desired eigenvalue configurations are characterized in
terms of algebraic divisibility of the characteristic polynomial of
the closed-loop system. We also consider the problem of partial
eigenvalue placement, where not all eigenvalues are fixed by
feedback. Degrees of freedom in the controller design are used
for the minimization of various matrix norms of the feedback
gain matrix.

Index Terms—Linear time-invariant systems, eigenvalue place-
ment, static output feedback, polynomial ideals, Gröbner bases,
quantifier elimination, norm minimization

I. INTRODUCTION

This paper deals with a controller design problem for linear
time-invariant systems. We consider linear state space systems
in the form

ẋ = Ax+Bu, y = Cx (1)

with matrices A ∈ Qn×n, B ∈ Qn×m, C ∈ Qr×n over the
rational field Q. The restriction to rational number allows an
exact computer representation of the system.

Typically, controller design for system (1) is carried out
by means of a state feedback. The feedback law is then
implemented in combination with a state observer resulting in
a dynamic output feedback control law. From the viewpoint
of implementation, a static output feedback law

u = −Ky (2)

with the gain matrix K ∈ Rm×r would be advantageous. How-
ever, for both eigenvalue placement as well as stabilization,
these problems are significantly more challenging compared
to the state feedback control [1]–[6].

This paper extends the conference paper [7] presented at
ICSTCC 2021. In [7], we considered the computation of a gain
matrix K of the feedback law (2) minimizing the Frobenius
and the maximum norm, respectively. In this contribution we
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extended these approaches to the minimization of the spectral
norm as well as the maximum absolute row and column sum
norms.

In some applications, the full placement of all eigenvalues
is not possible or not desired. This case, where only a certain
subset of the eigenvalues for the closed loop is assigned,
is referred to as partial eigenvalue placement [8], [9]. To
calculate the state feedback for a stabilizable system one
computes a Kalman decomposition into a controllable and
an uncontrollable subsystem, respectively, and carries out
eigenvalue assignment for the controllable subsystem. This
approach to partial eigenvalue placement can be interpreted
as a full eigenvalue assignment in the controllable subspace.
In general, partial eigenvalue placement usually relies on
projection or subspace methods, see [8], [9].

Controller design procedures for state space systems (1),
which are available in numerical software packages such as
MATLAB, GNU OCTAVE and SCILAB are based on linear
algebra [10], [11]. Although we consider a linear controller for
a linear system, multivariable controller design is intrinsically
a multilinear problem [3], [12], which may lead to a linear
problem only under special conditions [5], [13]. This type of
problems can be solved by means of Gröbner bases [5], [14]
using the framework of algebraic geometry [15]–[17].

In general, a small feedback gain is considered advan-
tageous for robust controller design [11]. Several authors
developed numerical methods to minimize the Frobenius norm
of the feedback gain matrix [18]–[21]. The spectral norm is
often used in a similar context. We discuss the minimization
of both norms using polynomial ideals.

For a digital implementation of the control law using
integers it would be advantageous if all entries of the gain
matrix have values in the same order of magnitude. This and
related goals can be addressed by minimizing the maximum
matrix norm as well as the maximum absolute row and column
sum norms of the gain matrix. This optimization problem can
be solved using quantifier elimination [22], [23].

In Section II we consider the mathematical formulation of
our feedback design goals. Computation methods are discussed
in Section III. Our approach will be demonstrated on several
example systems in Section IV. In Section V we summarize
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the results.

II. FEEDBACK DESIGN CONSIDERATIONS

System (1) with the static output feedback (2) results in the
closed-loop system

ẋ = (A−BKC)x (3)

with the characteristic polynomial

CP(s) = det(sI − (A−BKC))
= a0 + a1s+ · · ·+ an−1s

n−1 + sn.
(4)

In this section we will discuss possible design goals.

A. Full and Partial Eigenvalue Placement

Some design procedures require certain constellations of
eigenvalues. For example, the complete modal synthesis re-
quires pairwise distinct eigenvalues [24], [25]. In this section,
conditions for the assignment of different eigenvalue constel-
lations are derived.

Distinct Eigenvalues: Assume we want to assign l ≤ n
eigenvalues s1, . . . , sl to the closed-loop system (3). We
temporarily assume that the desired eigenvalues are distinct
and real. A number si is an eigenvalue of the closed-loop
system (3) if and only if the characteristic polynomial (4)
contains the linear factor (s − si). This factorization can be
stated by the remainders of polynomial divisions

CP(s) mod (s− si)
!
= 0 for i = 1, . . . , l. (5)

In (5), the polynomial division to compute the remainder
is carried out for each linear factor separately. The associated
remainders can also be calculated successively

CP(s) = (s− s1) ·Q1(s) + R1

Q1(s) = (s− s2) ·Q2(s) + R2

...
Ql−1(s) = (s− sl) ·Ql(s) + Rl

(6)

resulting in the condition

Ri
!
= 0 for i = 1, . . . , l. (7)

Note that for the polynomial divisions in (5) and (6) the divisor
polynomial (s − si) is a linear factor in s, i.e., a polynomial
of degree one. The residual polynomial is of lower degree and
therefore constant w.r.t. s, i.e., the remainders in (5) and (6)
depend only on the entries kij of the feedback gain matrix K.
The formulas in (5) and (7) may be different, but for district
zeros s1, . . . , sl these polynomials generate the same ideal.
Hence, they have the same zero set, i.e., the same algebraic
variety.

Multiple Eigenvalues: Assume that the eigenvalue si ∈ Q
has the algebraic multiplicity of ν ≥ 2. In this case, the char-
acteristic polynomial (4) should contain the factor (s− si)ν .
Then, the successive division scheme according to (6) can be
carried out as above, where the divisor (s−si) is used exactly
ν times. Alternatively, we could replace the division by linear
factors in (5) by

R̃i(s) := CP(s) mod (s− si)ν
!≡ 0, (8)

where the resulting remainder R̃i(s) is polynomial of degree
less than ν in s. The remainder R̃i(s) must be the zero
polynomial, i.e., all coefficients of R̃i(s) w.r.t. s are set to
zero.

Complex Conjugate Pair: Now, we consider a conjugate
complex pair si = σ + jω and si+1 = σ − jω. Instead of
using two complex linear factors as in (5) we now use a real
quadratic factor as divisor

R̃i(s) := CP(s) mod (s− si)(s− si+1)
= CP(s) mod (s− σ − jω)(s− σ + jω)

= CP(s) mod (s2 − 2σs+ σ2 + ω2)
!≡ 0.

(9)

The resulting remainder R̃i(s) is a polynomial of degree one
w.r.t. the variable s. Setting both coefficients to zero yields
two algebraic equations in the variables kij . This approach
can easily be extended to multiple complex conjugate pairs.

B. Stability
If the l < n eigenvalues s1, . . . , sl are assigned as roots

of the characteristic polynomial (4), the polynomials (s− si)
for i = 1, . . . , l are factors of (4). Therefore, the polynomial
division
Ql(s) = CP(s) div (s− s1) · · · (s− sl)

= q0 + q1s+ · · ·+ qn−l−1s
n−l−1 + sn−l

(10)

with the quotient polynomial Ql(s) is carried without remain-
der. Note that Ql(s) occurs also in the last step of the division
scheme (6). The polynomial Ql(s) describes the dynamics not
covered by the partial eigenvalue placement mentioned above.
We want to ensure that Ql(s) is a Hurwitz polynomial, i.e., that
all roots are in the open left half complex plane. Conditions
on the coefficients for this stability property can be derived
using the Routh or Hurwitz test

n− l = 2 : q0 > 0 ∧ q1 > 0,
n− l = 3 : q0 > 0 ∧ q1 > 0 ∧ q1q2 − q0 > 0,
n− l = 4 : q0 > 0 ∧ q1 > 0 ∧ q2 > 0

∧ q1q2q3 − q21 − q0q23 > 0,...

(11)

see [26]–[28]. Similar conditions can be derived for the
stability with purely real eigenvalues, i.e., with roots on the
open left half real axis, see [28]–[31].

C. Matrix Norms
The minimization (or at least a reduction) of the norm of the

feedback gain matrix is a general goal in robust control [18]–
[21]. In general, a ‘softer‘ control law is considered advanta-
geous in robust control [32].
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1) Frobenius Norm: In the authors opinion, the Frobenius
norm

‖K‖F =

√∑
ij

k2ij (12)

is the most commonly used matrix norm in control theory
for such type of design objectives [11], [21]. For the case
of state feedback (i.e., C = I), the minimization w.r.t. (12)
can be formulated via Sylvester’s equation [18]–[20]. Also,
general numerical optimization methods can be used. For later
considerations we would like to point out that the value g =
‖K‖F can equivalently be characterized by

g ≥ 0 ∧ g2 =
∑
ij

k2ij . (13)

The Frobenius norm is often used in numerical linear algebra.
The norm is submultiplicative due to the Cauchy-Schwarz
inequality.

2) Spectral Norm: The Frobenius norm (12) can be seen
as a generalization of the Euclidean norm

‖y‖2 =

√∑
i

y2i (14)

of a vector y ∈ Rr. This vector norm induces the matrix norm

‖K‖2 = max
‖y‖2=1

‖Ky‖2, (15)

which is called spectral norm. The norm (15) can also be
characterized as the largest value g with

g ≥ 0 ∧
∑
i

y2i = 1 ∧ g2 =
∑
i

∑
j

kijyj

2

. (16)

The spectral norm (15) can also be characterized by means
of singular values. Consider the characteristic equation

det(sI −KTK) = 0 (17)

of a symmetric eigenvalue problem. While the matrix K ∈
Rm×r may not be square, the matrix product KTK is square,
symmetric and positive semidefinite. Hence, all roots s1 ≥
s2 ≥ · · · of (17) are real and non-negative. The singular values
σ1 ≥ σ2 ≥ · · · of K are the square roots of these eigenvalues,
i.e., σi =

√
si for i = 1, . . . ,min{m, r}. Let σ̄(K) := σ1

denote the largest singular value of the matrix K. Then, the
spectral norm (15) can be written as

‖K‖2 = σ̄(K). (18)

The norms (12) and (15) are related by

‖K‖2 ≤ ‖K‖F.

3) Maximum Norm: For a fast implementation of the con-
trol law (2), all measured and control variables are normalized
to a certain range. This range is mainly determined by the
integer range of the analog-to-digital and digital-to-analog
converters. For the most uniform exploitation of the available
measuring and control range, we would like to suggest the use
of the maximum norm

‖K‖max = max
ij
|kij |. (19)

The norm (19) can also be characterized as the smallest value g
fulfilling ∧

i,j

(−g ≤ kij ≤ g) . (20)

Note that this matrix norm is not submultiplicative [33, p. 56].
4) Maximum Absolute Row and Column Sum Norms: The

vector norms

‖y‖∞ = max
i
|yi| and ‖y‖1 =

∑
i

|yi|

induce the absolute row sum norm

‖K‖∞ = max
‖y‖∞=1

‖Ky‖∞ = max
i

∑
j

|kij | (21)

and the absolute column sum norm

‖K‖1 = max
‖y‖1=1

‖Ky‖1 = max
j

∑
i

|kij |, (22)

respectively. Introducing numbers gij with

−gij ≤ kij ≤ gij , (23)

the norm (21) can be characterized as the minimum value g
with ∧

i

∑
j

gij ≤ g. (24)

Similarly, the norm (22) can be characterized as the minimum
value g with ∧

j

∑
i

gij ≤ g. (25)

The norms (21) and (22) are related by

‖K‖∞ = ‖KT ‖1 and ‖K‖1 = ‖KT ‖∞.

Remark 1. With the assignment of n eigenvalues with negative
real parts, the additional minimization of the norm of the
gain matrix will always lead to a stable closed loop system
as well. For a partial placement of l < n eigenvalues with
negative real parts, the situation may be different. If the
solution with minimum matrix norm is an interior point in the
stability region of the parameter space of the entries of the gain
matrix K according to (11), then the controller design problem
is solved. Otherwise, we want to avoid solutions on the border
of the stability region. In this case, we would replace the strict
stability condition (11) by a robust stability condition, e.g.
ensuring a certain margin of the eigenvalues to the imaginary
axis, see [34], [35].
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D. System Norm

To study the dynamics of the closed-loop system we aug-
ment the feedback (2) by an additional reference input signal w
resulting in the control law

u = −Ky + w. (26)

The transfer function of the closed-loop system, i.e., from the
reference signal w to the output signal y, is a r ×m-matrix

T (s) = C (sI − (A−BKC))
−1
B. (27)

We assume that the gain matrix K was chosen such that the
closed-loop system is bounded-input bounded-output (BIBO)
stable. Then, the transfer function (27) belongs to the Hardy
space H∞, see [36]. This vector space is equipped with the
norm

‖T‖∞ = sup
ω
σ̄(T (jω)). (28)

In this equation, the frequency response T (jω) is a complex
matrix, from which the matrix spectral norm ‖T (jω)‖2 is
computed according to (18). Then, the supremum is computed
over all radian frequencies ω ∈ R.

The frequency response T (jω) can be interpreted as a
complex matrix-valued frequency dependent gain factor for
the system under vector-valued harmonic excitation. Roughly
speaking, the system norm (28) is the largest possible gain
factor of the system.

Note that the norms (21) and (28) should not be confused,
even though the same notation is used. The norm (21) is a
matrix norm in a finite dimensional real or complex vector
space, whereas (28) is a norm in an infinite dimensional
function space.

III. COMPUTATION METHODS

The Frobenius and the spectral norm are minimized by
a constrained optimization with multivariate polynomials. To
minimize the maximum norm as well as absolute row and col-
umn sum norm, quantifier elimination is used. Both techniques
belong to the field of computational algebra [15], [16].

A. Constrained Optimization with Polynomials

The minimization of the Frobenius norm (12) characterized
by (13) under equality constraints such as (5) or (7) can be
formulated as a constrained optimization problem with the
Lagrangian function

L(K,λ) =
∑
ij

k2ij +

l∑
i=1

λiRi(K), (29)

where λ denotes the vector of the Lagrangian multipliers [37].
Note that the conditions (8) to (9) can be treated similarly.
With the variables z = (k11, . . . , kmr, λ1, . . . , λl), the first
order necessary conditions for constrained optimization are
given by

∂

∂zi
L(K,λ)

!
= 0 for i = 1, 2, . . . , N (30)

with N = mr + l.

The Lagrangian (29) is a multivariate polynomial in the ring
Q[z]. Therefore, the partial derivatives occurring in (30) are
also polynomials, which generate an ideal

I =

〈
∂

∂z1
L(K,λ), . . . ,

∂

∂zN
L(K,λ)

〉
⊂ Q[z], (31)

see [15]. The set of all (possibly complex) solutions of (30)
is the variety V(I) ⊂ CN of the ideal I, and the real variety
V(I) ∩ RN contains all real solutions. To solve the set of
polynomial equations (30) we first compute a Gröbner basis
of the ideal I with respect to lexicographic order. From this
Gröbner basis we obtain the elimination ideals, where the j-th
elimination ideal is defined by

Ij = I ∩Q[zj+1, . . . , zN ]. (32)

Using these elimination ideals we can compute the real so-
lutions numerically. The required calculation can be carried
out with the open source computer algebra packages MAX-
IMA [38] as well as SAGEMATH [39]. From a finite number
of solutions in the variables z one can easily select the values
k11, . . . , kmr of the gain matrix K such that the norm (12) is
the smallest.

For an optimization w.r.t. the spectral norm (15) we define
the Lagrangian

L(K,λ, y) =
∑
i

∑
j

kijyj

2

+λ0

(∑
i

y2i − 1

)
+

l∑
i=1

λiRi

(33)
with the addition Lagrangian multiplier λ0 to take the
conditions (16) into account. The variables of this con-
strained optimization problem are collected in the vector z =
(k11, . . . , kmr, λ0, λ1, . . . , λl, y1, . . . , yr). Then, we compute
the first order derivatives (30) with N = (m+1) r+ l+1 and
proceed as above.

In order to obtain the spectral norm, we have to maximize
the last term in (16) for all y ∈ Rr belonging to the unit sphere,
i.e., ‖y‖2 = 1. On the other hand, we want to minimize this
term over all admissible values of the entries kij satisfying
the constraints resulting from the eigenvalue placement. This
results in a min-max problem.

Alternatively, we could use the eigenvalue problem (17) to
characterize the spectral norm (15). This consideration leads
to the Lagrangian

L(K,λ, s) = s+ λ0 det(sI −KTK) +

l∑
i=1

λiRi (34)

depending on the variables collected in the vector z =
(k11, . . . , kmr, λ0, λ1, . . . , λl, s). Otherwise, we proceed as
above.

Since the method of Lagrange multipliers writes the gra-
dient of the objective function as a linear combination of
the gradients of the constraint functions (using the Lagrange
multipliers λi), (30) may fail to hold at the optimal point, if
said gradients of the constraint functions w.r.t. the independent
variables kij are linearly dependent. The preconditions for (30)
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to hold at the optimal point are called constraint qualification.
There are different criterions on the constraints [40]–[42] with
different generality. Among these we will use the weakest
one, namely that the gradients of the constraints are linearly
independent. The points that fail these conditions can be
computed easily and in a similar manner:

The equations for that the gradient of Ri, i = 1, . . . , l
w.r.t. the gains K is a multiple of that of the other con-
straints Rj , j 6= i, can be written as

Cipq =
∂Ri
∂kpq

+

l∑
j=1,j 6=i

µj
∂Rj
∂kpq

= 0

for p = 1, . . . ,m and q = 1, . . . , r. These polynomials
generate the ideal

Ji = 〈R1, . . . , Rl, Ci11, . . . , Cimr〉 (35)

in the polynomial ring containing additional auxiliary vari-
ables µj , j = 1, . . . , l, j 6= i. From these ideals we now can
compute the real solutions of the (l− 1)-th elimination ideal.
The optimal value is sought not only in the real variety of (31),
but also in those of the ideals (35). Note that in the case of (33)
and (34) the additional constraints and the auxiliary variables
must also be taken into account.

B. Quantifier Elimination

The usage of quantifier elimination in control theory has
been suggested first in [43]. A serious drawback was the
huge computational effort [44]. The significant advances in
computing technology and the improvement of the algorithms
make it feasible for practical applications [27].

We consider multivariate polynomials over the rational
field Q. These polynomials can be represented exactly in
computer algebra systems. In the model theoretic framework, a
polynomial equation or inequality is called an atomic formula.
The concatenation of atomic formulas by boolean operations
(such as ∧, ∨, ¬) yields a quantifier-free formula. Quantifier-
free formulas describe semi-algebraic sets.

Consider a quantifier-free formula in n + 1 variables. This
formula describes a semi-algebraic set in Rn+1. According
to the Tarski-Seidenberg-Theorem [23], [45], the projection of
this set down to Rn results again in a semi-algebraic set.
Mini Example 1. The polynomial equation

x2 + 2xy + 3y2 − 1 = 0 (36)

of the ellipse shown in Fig. 1 describes a semi-algebraic set.
The projection to the x-axis yields the polynomial inequality

−1.2247 ≈ −
√

3
2 ≤ x ≤

√
3
2 ≈ 1.2247, (37)

whereas the projection to the y-axis results in

−0.7071 ≈ −
√

1
2 ≤ y ≤

√
1
2 ≈ 0.7071. (38)

Both inequalities describe semi-algebraic sets.

Remark 2. Note that the projection property discussed above
does not hold for algebraic sets, i.e, sets described by a

Fig. 1. Ellipse corresponding to (36)

finite number of polynomial equations (without inequalities).
For example, while describes (36) is an algebraic set, the
projections (37) and (38) cannot be formulated in terms of
algebra sets.

Let F (x, z) be a quantifier-free formula in the variables
x = (x1, . . . , xn) and z = (z1, . . . , zm). A prenex formula is
an expression of the form

(Q1x1)(Q2x2) · · · (Qnxn)F (x, z) (39)

with quantifiers Qi ∈ {∀,∃,∃!, . . .} for i = 1, . . . , n. The
variables x1, . . . , xn are called quantified, whereas z1, . . . , zm
are free variables. As a consequence of the Tarski-Seidenberg-
Theorem, each prenex formula (39) can equivalently be repre-
sented by a quantifier-free formula H(z). By the transforma-
tion of (39) into the form H(z), the quantifiers are eliminated
along with the quantified variables x. This process is called
quantifier elimination [22].

Mini Example 2. Consider the ellipse used in Mini Example 1.
Applying quantifier elimination to the prenex formula

∃y : x2 + 2xy + 3y2 − 1 = 0

with the free variable x and the quantified variable y yields
the equivalent quantifier-free formula 2x2−3 ≤ 0, which cor-
responds to the interval (37). Similarly, quantifier elimination
of

∃x : x2 + 2xy + 3y2 − 1 = 0

with the quantified variable x and the free variable y results
in the equivalent quantifier-free formula 2y2 − 1 ≤ 0 corre-
sponding to (38).

During the last decades, several algorithms for quantifier
elimination have been developed and improved. The most
common algorithms are cylindrical algebraic decomposition
(CAD) [46], virtual substitution (VS) [47], [48] and real root
classification (RRC) [49], [50].

One of the first programs for solving non-trivial prob-
lems was QEPCAD, where a version of CAD was imple-
mented [51]. The computations in this paper were carried out
with the REDUCE package REDLOG [52], which combines a
efficient implementation of VS with CAD as fallback solu-
tion [53]. Note that there are also quantifier elimination pack-
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ages available for the commercial computer algebra system
MAPLE, see [54], [55].

Quantifier elimination may lead to very large expressions,
which can be simplified with the program SLFQ [56]. This
program is based on QEPCAD B, see [57]. Note that SLFQ
uses extended Tarski formulas to represent the simplified
formulas.

Let f(s) ∈ Z[s] be a univariate polynomial in the variable s
with integers coefficients. The term

rootj f(s) (40)

with j ∈ Z denotes the |j|-th real root, where these roots are
ordered from smallest to largest if j > 0 and largest to smallest
if j < 0. This notation can be used for an exact representation
of irrational roots.
Mini Example 3. To illustrate the extended Tarski notation we
consider the polynomial f(s) = s3 − 8s2 + 14s− 4 with the
roots s1 = 3 −

√
7 ≈ 0.354249, s2 = 2 and s3 = 3 +

√
7 ≈

5.645751. Using the notation (40), these real roots can be
represented by

s1 = root+1 f(s) = root−3 f(s),
s2 = root+2 f(s) = root−2 f(s),
s3 = root+3 f(s) = root−1 f(s).

IV. EXAMPLES

In the Sections IV-A to IV-C we carry out full eigenvalue as-
signment, where we consider distinct, multiple and conjugate
complex eigenvalues, respectively. In Section IV-D we perform
a partial eigenvalue placement. The examples discussed were
taken from the literature, where the eigenvalue placements
were carried out without optimization. We already used these
examples in the conference contribution [7], where the mini-
mization of the Frobenius and maximum norm were discussed
in more detail (see also [58]). Here, we also minimized the
spectral norm as well as the maximum absolute row and
column sum norms.

For the computations we employed a standard PC with
Intel® Core™ i7-9700 CPU running at a clock frequency of
3 GHz with 32 GiB RAM under the Linux operating system
Fedora 35 (x86-64). The polynomial ideals were computed
with SAGEMATH 9.4. To carry out quantifier elimination we
used REDUCE (CSL, rev 6261) with REDLOG.

A. Example 1

We consider the system

A=

−11.4 −3.5 0
4 0 0
0 1 0

 , B =

2 1
0 −1
0 0


C=

(
1 0 1.425
1 −1 0

)
, K=

(
k11 k12
k21 k22

) (41)

discussed in [59, Example 1], where the eigenvalues are placed
at s1 = −1, s2 = −2 s3 = −3. The authors computed the
gain matrix

K =

(
2.7827 −3.4933
2.1837 −3.0812

)
. (42)

The values of the different norm are given in line 0 of Table I.
For the eigenvalue placement we used the conditions (5)

with the above mentioned l = n = 3 eigenvalues. First,
we want to compute the gain matrices with the minimum
Frobenius norm as well as minimum spectral norm using the
Lagrangian functions (29) and (33), respectively. From (30)
we obtain the polynomials generating the ideals (31). Using
SAGEMATH [39], we computed the associated varieties. The
real solutions with minimum norms are listed in the lines 1
and 2 of Table I. Both norm are reduced by a factor greater
than three compared to the initial gain matrix (42).

Now, we want to minimize the norm (19) described by (20).
As a first step, we want to determine the admissible range of
the norm (19). Quantifying all entries kij of the gain matrix
yields the prenex formula

∃k11, k12, k21, k22 : Cond. (5) ∧ Cond. (20). (43)

Using g as a free variable results in 540 KiB code after
quantifier elimination. This can be simplified with SLFQ to
the condition

g ≥ root+1{9239795g2 − 101272318g + 105598160}, (44)

where we used the notation introduced by (40) in Sec-
tion III-B. The polynomial of degree two has two real solutions
g1 ≈ 1.166962 and g2 ≈ 9.793489. The smallest real solution
g = g1 required in (44) can be described by the equivalent
quantifier free formula

9239795g2 − 101272318g + 105598160 = 0 ∧ g < 2. (45)

We add this formula to the conditions (43) for eigenvalue
placement and assign the existential quantifier to the vari-
able g. Then, one of the entries kij of the gain matrix is chosen
as a free variable, i.e., we omit the existential quantifier for
this variable. For example, quantifier elimination applied to
the prenex formula

∃g, k12, k21, k22 : Cond. (5) ∧ Cond. (20) ∧ Cond. (45).

yields a quantifier free formula in the variable k11. Step by
step, quantifier elimination results in the gain matrix shown in
line 3 of Table I. The computed maximum norm is less than
half of the value resulting from (42).

Finally, we want to compute the gain matrices minimizing
the absolute row and column sum norms (21) and (22), respec-
tively. Similar to the maximum norm, we want to determine
the admissible range of these norms. For the absolute row
sum norm (21), we have to take (23) and (24) into account.
In particular, the bound (23) means

−g11 ≤ k11 ≤ g11 ∧
−g12 ≤ k12 ≤ g12 ∧
−g21 ≤ k21 ≤ g21 ∧
−g22 ≤ k22 ≤ g22,

(46)

where (24) is stated as

g11 + g12 ≤ g ∧ g21 + g22 ≤ g. (47)
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TABLE I
ENTRIES OF THE GAIN MATRICES AND THE ASSOCIATED NORMS FOR EXAMPLE 1 (SECTION IV-A)

no gain matrix K ‖K‖F ‖K‖2 ‖K‖max ‖K‖∞ ‖K‖1 ‖T‖∞

0

(
2.7827 −3.4933
2.1837 −3.0821

)
5.849312 5.847063 3.4933 6.276 6.5754 2.554425

1

(
−0.247755 −1.174350
−1.157344 −0.699223

)
1.807993 1.661065 1.17435 1.856567 1.873573 2.039429

2

(
−0.217210 −1.198257
−1.126173 −0.721447

)
1.808799 1.659957 1.198257 1.84762 1.919704 2.019611

3

(
−0.257192 −1.166962
−1.166962 −0.692366

)
1.80807 1.661852 1.166962 1.859328 1.859328 2.045574

4

(
0.200078 −1.523553
−0.694212 −1.029419

)
1.97557 1.854319 1.523553 1.723631 2.552972 1.775359

5

(
−0.380755 −1.070096
−1.292326 −0.602986

)
1.823123 1.690691 1.292326 1.895312 1.673082 2.126925

To compute the admissible values g of the norm (21), we
consider the prenex formula

∃g11, g12, g21, g22, k11, k12, k21, k22 :
Cond. (5) ∧ Cond. (46) ∧ Cond. (47) (48)

with the quantified variables gij , kij and the free variable g.
Alternatively, the bounds (46) and (47) can equivalently be

written as

−g ≤ +k11 + k12 ≤ g ∧
−g ≤ −k11 + k12 ≤ g ∧
−g ≤ +k11 − k12 ≤ g ∧
−g ≤ −k11 − k12 ≤ g ∧
−g ≤ +k21 + k22 ≤ g ∧
−g ≤ −k21 + k22 ≤ g ∧
−g ≤ +k21 − k22 ≤ g ∧
−g ≤ −k21 − k22 ≤ g,

(49)

where the auxiliary variables gij are omitted. The correspond-
ing prenex formula reads

∃k11, k12, k21, k22 : Cond. (5) ∧ Cond. (49). (50)

Quantifier elimination of (48) or (50) results in 983 KiB
code for the equivalent quantifier free formula, which can be
simplified with SLFQ to the condition

g ≥ root+1{18829760q2−119433867q+ 149918508}. (51)

The polynomial occurring in (51) has two real roots g1 ≈
1.723631 and g2 ≈ 4.619194, where (51) corresponds to g ≥
g1. To obtain the minimum allowed value of g fulfilling the
extended Tarski formula (51) we use the condition

18829760g2 − 119433867g + 149918508 = 0 ∧ g < 2, (52)

where the inequality g < 2 separates these the two roots. Then,
we add (52) to the prenex formulas (48) or (50) and compute
the elements kij step by step. The gain matrix shown in line 4
of Table I.

For the absolute column sum norm (22), we have to
take (23) and (25) into account. In our example, the bound (23)
is already stated as (46), and (25) corresponds to

g11 + g21 ≤ g ∧ g12 + g22 ≤ g. (53)

To calculate the admissible values g of the norm (22), we
consider the prenex formula

∃g11, g12, g21, g22, k11, k12, k21, , k22 :
Cond. (5) ∧ Cond. (46) ∧ Cond. (53). (54)

Quantifier elimination resulted in 7.3 MiB code, which could
not be simplified with SLFQ. However, using the equivalent
formulation

−g ≤ +k11 + k21 ≤ g ∧
−g ≤ −k11 + k21 ≤ g ∧
−g ≤ +k11 − k21 ≤ g ∧
−g ≤ −k11 − k21 ≤ g ∧
−g ≤ +k12 + k22 ≤ g ∧
−g ≤ −k12 + k22 ≤ g ∧
−g ≤ +k12 − k22 ≤ g ∧
−g ≤ −k12 − k22 ≤ g,

(55)

with the prenex formula

∃k11, k12, k21, k22 : Cond. (5) ∧ Cond. (55) (56)

yields 4.0 MiB code, which are simplified with SLFQ into

g ≥ root+1{351500g2 − 1927565g + 2241054}. (57)

The polynomial has the real roots g1 ≈ 1.673082 and g2 ≈
3.810745. Therefore, the minimum value of g can be described
by the polynomial bound

351500g2 − 1927565g + 2241054 = 0 ∧ g < 2.

To compute the gain matrix we proceed as above. The result
is shown in line 5 of Table I.

For each of the computed feedback gain matrices K, the
transfer function (27) of the closed-loop system has the same
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poles. However, the input-output behaviour may differ. Fig. 2
shows the Bode magnitude plot of the transfer function (27)
for different gain matrices K. For the initial gain matrix (42),
the magnitude plot has a significant peak. The lowest gain
over all frequencies is achieved with the ‖K‖∞-optimal gain
matrix.

The supremum over of the magnitude over all frequencies is
the system norm (28). The results are listed in the last column
of Table I. As for the gain matrices listed there, the largest
system norm occurs using the initial gain matrix (42), whereas
the ‖K‖∞-optimal gain matrix results in the lowest system
norm.

Fig. 2. Bode magnitude plot of the transfer function (27) for different gain
matrices K of Example 1 (Section IV-A)

B. Example 2

Consider the system

A =

 0 1 0
19.62 0 −8.86

0 0 −100

 , B =

0 −1
0 1
1 0


C =

(
1 0 2
1 1 0

)
, K =

(
k11 k12
k21 k22

) (58)

taken from [59, Example 2]. As suggested in [59], we want
to place the eigenvalues at s1 = s2 = −3 and s3 = −4,
which includes a double eigenvalue. In the paper mentioned,
the authors computed the gain matrix

K =

(
−44.7401 −11.3932

0.5199 −0.1689

)
. (59)

The values of the different norm are listed in Table II.
To derive conditions for the eigenvalue placement we carry

out the polynomial division according to scheme (6), twice
with the divisor (s + 3) and once with (s + 4). This results
in constraints of the form (7). We computed the gain matrices
with minimum Frobenius, spectral and maximum as described.
The results are given in the lines 1 to 3 in Table II.

Next, we want to determine the admissible range for the
absolute row sum norm (21), where we take the bounds (23)
and (24) into account. These considerations result in the prenex
formula

∃g11, g12, g21, g22, k11, k12, k21, , k22 :
Cond. (7) ∧ Cond. (46) ∧ Cond. (47). (60)

Quantifier elimination with a subsequent simplification with
SLFQ results in the condition

g > root−1{228195g2 − 19617029g + 420469392}. (61)

The polynomial of degree two has the real roots g1 ≈
40.757391 and g2 ≈ 45.208686. Hence, this condition can
equivalently be stated as

228195g2 − 19617029g + 420469392 > 0 ∧ g > 45. (62)

However, the set of admissible values g described by the
lower bound (61) has no minimum because it is an open in-
terval. On the other hand, the eigenvalues depend continuously
on the entries of the matrix. Therefore, we can approximate
a minimum norm solution by the condition g = g2 + ε
with a small number ε > 0. In practice, we round up the
numerically determined value g2. In our case, we use the
condition g := 45.208687, which is consistent with (61)
and (62). With this additional constraint, we determine the
entries kij of the matrix K step by step. For each entry we
now obtain a small interval, where we select one value. The
results are given in the line 4 in Table II.

The computation of the admissible range for the absolute
column sum norm (22) is carried out similarly. Quantifier
elimination with a subsequent simplification yields

g > 45. (63)

Again, the set (63) of admissible values for the norm has
the infimum 45 but no minimum. Therefore, we add a small
value ε > 0 to the infimum and specify the condition (63)
to g := 45.000001, which is then used to compute the entries
of the gain matrix K. The results are given in the line 5 in
Table II.

The Bode magnitude plots of the transfer functions (27) for
different gain matrices K are shown in Fig. 3. The ‖K‖max-
optimal gain matrix yields the largest system magnitude and
the ‖K‖2-optimal gain matrix the lowest. This result can also
be seen in the last column of Table II, where the values of the
corresponding system norm (28) are shown.

C. Example 3

The system matrices of the third example are given by

A =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 , B =


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1


C =

(
1 0 0 0 0
0 1 0 0 0

)
, K =

k11 k12
k21 k22
k31 k32


(64)
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TABLE II
ENTRIES OF THE GAIN MATRICES AND THE ASSOCIATED NORMS FOR EXAMPLE 2 (SECTION IV-B)

no gain matrix K ‖K‖F ‖K‖2 ‖K‖max ‖K‖∞ ‖K‖1 ‖T‖∞

0

(
−44.7401 −11.3932

0.5199 −0.1689

)
46.171207 46.170284 44.7401 56.1333 45.26 13.113644

1

(
−45.080824 −2.273451
−0.161647 −0.884756

)
45.147072 45.138583 45.080824 47.354274 45.242471 6.024498

2

(
−45.078102 −2.326444
−0.156204 −0.888482

)
45.147109 45.138546 45.078102 47.404546 45.234306 6.022228

3

(
−41.591684 5.301424

6.816632 −41.591684

)
59.450046 47.657611 41.591684 48.408316 48.408316 53.497508

4

(
−45.208686 0

−0.417372 −0.60688

)
45.214686 45.210613 45.208686 45.208686 45.626058 6.83164

5

(
−45 −3.946595

0 −0.948079

)
45.182679 45.172807 45 48.946595 45 6.329109

Fig. 3. Bode magnitude plot of the transfer function (27) for different gain
matrices K of Example 2 (Section IV-B)

see [60, Example 3]. The desired eigenvalues of the closed-
loop system should be located at −3,−4,−5,−2± 2j, which
includes a complex conjugate pair. In [60], the authors numer-
ically computed the feedback gain matrix

K =

 5 11
24.3999 98.0002
137.001 370

 (65)

where the values of the different matrix norms are given in
Table III.

For the placement of the n = 5 eigenvalues, we have 6
entries of the gain matrix K. This degree of freedom can be
used to optimize the gain matrix. The Frobenius norm and
the maximum optimal gain matrices computed in [7], [61],
respectively, are given in line 1 and 3 of Table III.

To minimize the spectral norm, we used the Lagrangian (29)
and computed the ideal (31). The associated variety is zero-

dimensional and consists of 20 points, of which 8 points
correspond to a real gain matrix. From these points we selected
the optimal solution given in line 2 of Table III.

We were not able to compute a symbolic expression for
the admissible range for the absolute row sum norm (21).
However, we were able to verify whether a certain rational
value g > 0 is feasible. Using a bisection method, we were
able to obtain the approximate value g ≈ 373.19722. After
fixing this value, we could compute the entries of the gain
matrix K, see line 4 of Table III.

The computation of the admissible range for the absolute
column sum norm (22) with REDLOG resulted in 248 MiB
source code. SLFQ simplifies these expressions with 2255416
QEPCAD B calls to

g ≥ root−1{133g2 − 51480g − 1729800}
' max{−31.102227, 418.169896}
' 418.169896.

(66)

The minimum feasible values can be described by the quanti-
fier free formula

133g2 − 51480g − 1729800 = 0 ∧ g > 300.

The computed gain matrix is shown in line 5 of Table III
Similar as for the other examples, we computed the Bode

magnitude plots of the transfer functions (27) for different
gain matrices K. The results are shown in Fig. 4. The optimal
gain w.r.t. the Frobenius norm yields almost the same result as
in case of for the minimum spectral norm achieving a small
system norm (28). The ‖K‖1-optimal gain matrix yields the
largest system magnitude. These results are shown in the last
column of Table III, where the values of the corresponding
system norm (28) are listed.

30

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 2, NO. 1, JUNE 2022, pp. 22-33 

 

 
 



TABLE III
ENTRIES OF THE GAIN MATRICES AND THE ASSOCIATED NORMS FOR EXAMPLE 3 (SECTION IV-C)

no gain matrix K ‖K‖F ‖K‖2 ‖K‖max ‖K‖∞ ‖K‖1 ‖T‖∞

0

 5 11

24.3999 98.0002

137.001 370

 407.44898 407.30463 370 507.001 479.0002 0.822321

1

 1.895956 14.104044

−3.907739 101.10404

17.352556 373.10404

 387.23062 387.13934 373.10404 390.4566 488.31213 0.778624

2

 1.902063 14.097937

−3.863767 101.09794

17.533751 373.09794

 387.23067 387.13929 373.09794 390.63169 488.29381 0.778629

3

 193.76136 −177.76136
100.80929 −90.761363
−193.76136 181.23864

 397.40863 397.40039 193.76136 375 488.33202 2.079309

4

 194.59861 −178.59861
101.67428 −91.598606
−192.79582 180.40139

 397.75487 397.74668 194.59861 373.19721 489.06871 2.089456

5

 99.579831 −83.579831
0. 3.420169

−318.59006 275.42017

 440.75994 440.74861 318.59006 594.01023 418.1699 0.963403

Fig. 4. Bode magnitude plot of the transfer function (27) for different gain
matrices K of Example 3 (Section IV-C)

D. Example 4

We consider the system

A =


−1 0 0 0

0 −2 0 0
0 0 1 0
0 0 0 2

 , B =


1 0
1 0
1 1
1 0

 ,

C =

(
1 1 1 1
0 0 0 1

)
, K =

(
k11 k12
k21 k22

)
.

(67)

taken from [5, Example 4.2] with n = 4. The open-loop
system having the eigenvalues ±1,±2 is not stable. It was
shown [5] that system (67) is stabilizable by static output

feedback, but a feedback matrix was not presented. The
stabilization of this system is also discussed in [28].

Here, we want to perform a partial pole placement. For the
closed-loop system, l = 2 of the four eigenvalues are placed
at s1 = −3 and s2 = −4, where (5) leads to the following
equality constraints:

k11k22 − k12k21 + 5k21 + 4k12 + 39k11 − 20 = 0,
k11k22 − k12k21 + 6k21 + 5k12 + 36k11 − 30 = 0.

(68)

For this partial eigenvalue condition, we already computed
stabilizing gain matrices with minimum Frobenius norm as
well as minimum maximum norm in [7]. The results are
shown in Table IV. The two computed gain matrices differ
only slightly.

Next, we wanted to compute an optimal gain matrix w.r.t.
the spectral norm. The partial eigenvalue placement condi-
tions (68) are incorporated in the Lagrangian function (33)
using Lagrangian multipliers. Unfortunately, the optimal solu-
tion is not among the Karush-Kuhn-Tucker points. The same
holds for the Lagrangian function (34). In the latter case the
gradient of the characteristic polynomial (17) vanishes w.r.t.
the gains kij and the auxiliary variable s evaluated at the
gain matrix given in line 2 of Table IV. Thus, this gradient
is clearly linear dependent and the optimal solution is found
in the real variety of the ideal (35) corresponding to said
constraint (with µ = 0). The constraint is not regular at this
point due to the multiple singular value of the gain matrix.
It is noted that the approach using the unit vector y in (15)
leads to a positive-dimensional variety in such a case, since a
continuum of unit vectors y leads to the same norm ‖Ky‖2.

The computation of the gain matrix with optimal maximum
absolute row and column sum norms resulted in the same
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TABLE IV
ENTRIES OF THE GAIN MATRICES AND THE ASSOCIATED NORMS FOR EXAMPLE 4 (SECTION IV-D)

no gain matrix K ‖K‖F ‖K‖2 ‖K‖max ‖K‖∞ ‖K‖1 ‖T‖∞

1

(
−0.011708 4.652185

5.31269 −0.004657

)
7.061704 5.312792 5.31269 5.317347 5.324398 0.65377

2

(
0 5

5 0

)
7.071068 5 5 5 5 0.644788

matrix as in case of the optimal maximum as well as spectral
norm.

V. SUMMARY

In this paper we used computation methods from alge-
braic geometry to compute minimum norm gain matrices for
static output feedback control of linear time-invariant state
space systems. In general, these methods require a very high
computational effort. With modern computers and efficient
algorithms, non-trivial problems can now be solved. The
methods described have been successfully tested on several
different example systems.

The paper addressed the controller design based on eigen-
value assignment. We considered the placement of distinct
as well as multiple real eigenvalues or complex conjugate
pairs. The structure of the eigenvectors is thereby not taken
into account, as opposed to, for example, the complete modal
synthesis [24], [25].

We optimized the feedback gain matrices w.r.t. five norms
using two different computation methods. While a small
controller gain is generally helpful for robust control, it is not
obvious according to which criterion or norm an optimization
is recommended. The procedure described in the article gives
the option to compare several controllers, each with the same
eigenvalue configuration.

In this paper we extended the results presented in a previous
conference publication [7]. The approach used for the Frobe-
nius norm was modified for an optimization regarding to the
spectral norm. Similarly to the maximum norm, we achieved
an optimization w.r.t. the maximum absolute column sum or
the maximum absolute row sum norm resulting in the matrix
norms. The optimizations w.r.t. the new matrix norms required
a higher computational effort compared to the optimization
w.r.t. the Frobenius norm and the maximum norm, respectively.

In addition to the various matrix norms of the controller
gain, we also calculated the norm of the closed-loop transfer
function. The examples considered do not reveal any direct
relationship between the minimization of the norm of the gain
matrix and the norm of the transfer function. Conversely, this
means that the existing numerical methods of H∞ controller
design do not necessarily lead to a controller gain matrix with
small entries.
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