
Application of Heavy and Underestimated Dynamic
Models in Adaptive Receding Horizon Control

Without Constraints
Awudu Atinga

Doctoral School of Applied
Informatics and Applied Mathematics
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Abstract—In the heuristic “Adaptive Receding Horizon Con-
troller” (ARHC) the available dynamic model of the controlled
system usually is placed in the role of a constraint under which
various cost functions can be minimized over a horizon. A
possible secure design can be making calculations for a “heavy
dynamic model” that may produce high dynamical burden that
is efficiently penalized by the cost functions and instead of the
original nominal trajectory results a “deformed” one that can
be realized by the controlled system of “less heavy dynamics”.
In the lack of accurate system model a fixed point iteration-
based adaptive approach is suggested for the precise realization
of this deformed trajectory. To reduce the computational burden
of the control the usual approach in which the dynamic model is
considered as constraint and Lagrange-multipliers are introduced
as co-state variables is evaded. The heavy dynamic model
is directly built in the cost and the computationally greedy
Reduced Gradient Algorithm is replaced by a transition between
the simple and fast Newton-Raphson and the slower Gradient
Descent algorithms (GDA). In the paper simulation examples are
presented for two dynamically coupled van der Pol oscillators as
a strongly nonlinear system. The comparative use of simple non-
differentiable and differentiable cost functions is considered, too.

Index Terms—Newton-Raphson Algorithm, Gradient Descent
Algorithm, Reduced Gradient Algorithm, Receding Horizon
Control, Fixed Point Iteration-based Adaptive Control

I. INTRODUCTION

This paper is a further developed, extended version of the
conference publication [1] in which preliminary calculations
were made for two coupled van der Pol oscillators. The
originally electrical system (an externally excited triode in [2])
was “transformed” into a mechanical one that allowed working
with more convenient physical concepts and units.

The scientific antecedents can be briefly summarized as
follows. The idea of optimal controllers can be considered
as a generalization of the variational principles of Classical
Mechanics in which functionals are minimized. The subject
area can be related to the action functional generalized by
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Bellman as the Hamilton-Jacobi Bellman equation that in
the advent of the appearance of powerful computers resulted
the idea of “Dynamic Programming” [3], [4]. However, the
computational power of the processors even in the beginning
of the nineties of the past century was not satisfactory for this
purpose in robot control where fast motion was considered.
The optimal control framework was completely evaded in the
“Computed Torque Control” [5] in which the dynamic model
was directly use for the computation of the necessary control
forces. In the seventies, to reduce the computational burden
of dynamic programming the idea of the “Receding Horizon
Controller” was introduced in [6], in which the cost terms are
computed in discrete points of a finite horizon length, they are
summarized, and the dynamic model’s output (certain integer
order derivative of the generalized coordinate of the controlled
system) are estimated as finite element approximations over
this discrete grid. Evidently, the resolution of the grid had
to be fine enough to mathematically underpin this approach.
The constraint terms were considered as relationships between
the neighboring grid points and Lagrange’s Reduced Gradient
method [7] was applied for the cost minimization.

Certain special cases of this method lead to very popular
approaches. In the case of Linear Time-invariant dynamic
models and quadratic cost terms the occurring terms can be
even “formally treated”: based on Riccati’s observation in
1724 [8] according to which certain second order differential
equation’s solution was constructed by solving first order
differential equations, and on Schur’s lemma that made it
possible to tackle quadratic matrix problems with linear ones
[9], the idea of “Linear Quadratic Regulator” was developed
[10]. These solutions are built into efficient MATLAB codes
and the practice of transforming the real problems to such
approximate form and solving them by the use of appropriate
MATLAB packages was announced by Boyd et al. in 1994 in
[11].

Even in the simplified, time grid-based formalism the La-
grange multipliers used for gradient reduction maintain their
formal property, i.e., they are counterparts of the canonical
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momentum coordinates in the Hamiltonian equations of mo-
tion he introduced in 1834 [12], [13] from which strict analogy
with the flow of incompressible fluids can be deduced (e.g.,
[14]) together with its mathematical consequences.

However, by keeping in mind the fact that in the original
problem statement the co-state variables do not appear, at-
tempts were made for the elimination of their computation.
At first, instead of solving the usual set of linear equations
used for gradient reduction in EXCEL’s Solver package [15],
[16], the simpler Gram-Schmidt method [17], [18] –earlier
also invented by Laplace [19]–was suggested in [20]. As
further computational reduction possibility, instead using the
separate {g(i)(x) = 0; i = 1, 2, . . . ,K} constraint terms with
their associated Lagrange multipliers a single term G(x) :=∑
` g

(`)2 = 0 was applied with which only a single Lagrange
multiplier was associated. In [21] the dynamic model was not
treated as a constraint term. Instead of that it was directly
built in the cost function belonging to the whole horizon.
Consequently no gradient reduction was necessary, and the
way was opened for using the more efficient Newton-Raphson
algorithm [22], [23].

In this paper and in its immediate predecessor [1] the
same method is applied for the adaptive RHC control of
two coupled van der Pol oscillators. In the computations
different nominal trajectories were investigated. Besides the
original “fragmented linear” cost functions their differentiable
approximation was also investigated. Furthermore, for speed-
ing up the calculations a new stopping condition was built in
the system because it was experimentally observed that the
original construction sometimes was apt to spend too much
time in certain points. Simply the number of the numerical
steps was limited.

In the sequel at first the dynamic model of the two coupled
oscillators is given (it is identical to that used in [1]).

II. THE CONTROLLED SYSTEM

In the simulations three different parameter settings were
applied for the same dynamic model, according to Tables I
and II.

TABLE I
THE DYNAMIC MODEL PARAMETERS USED IN THE SIMULATIONS.

Parameter Unit Value
m1, “exact” mass [kg] 1.0
m̂1, “heavy” mass [kg] 2m1

m̌1, “approx.” mass [kg] 0.8m1

m2, “exact” mass [kg] 2.0
m̂2, “heavy mass” [kg] 2m2

m̌2, “approx.” mass [kg] 0.9m2

Based on [2] the dynamic model is given in (1). Its main
format is compatible with the dynamic equations of robots
having the structure H(q)q̈ + h(q, q̇) = Q. The originally
electrical system (an externally excited triode) has been trans-
formed into a 2 DoF “mechanical” system with generalized
coordinates q1, q2, generalized forces Q1 ≡ F1, Q2 ≡ F2, and
parameters given in Table I. Parameters a1 and a2 separate

the zones of damping and excitation. Evidently, for certain
coordinate values the system is excited, and for others it is
damped, depending on the signs of the terms

(
a21 − q21

)
and(

a21 − (q2 − L2)2
)
.

TABLE II
THE DYNAMIC MODEL PARAMETERS USED IN THE SIMULATIONS.

Parameter Unit Value
k1, “exact” spring stiffness [N ·m−1] 100.0

k̂1, “heavy” spring stiffness [N ·m−1] 1.2k1
ǩ1, “approx.” spring stiffness [N ·m−1] 0.8k1
k2, “exact” spring stiffness [N ·m−1] 150.0

k̂2, “heavy” spring stiffness [N ·m−1] 1.5k2
ǩ2, “approx.” spring stiffness [N ·m−1] 0.7k2
b1, “exact” excitation coeff. [N ·m−3 · s] 1.0

b̂1, “heavy” excitation coeff. [N ·m−3 · s] 1.5b1
b̌1, “approx.” excitation coeff. [N ·m−3 · s] 0.8b1
b2, “exact” excitation coeff. [N ·m−3 · s] 1.50

b̂2, “heavy” excitation coeff. [N ·m−3 · s] 1.25b2
b̌2, “approx.” excitation coeff. [N ·m−3 · s] 0.7b2
c1, “exact” visc. damping [N ·m−1 · s] 1.0
ĉ1, “heavy” visc. damping [N ·m−1 · s] 1.25c1
č1, “approx.” visc. damping [N ·m−1 · s] 0.8c1
c2, “exact” visc. damping [N ·m−1 · s] 1.50
ĉ2, “heavy” visc. damping [N ·m−1 · s] 1.5c2
č2, “approx.” visc. damping [N ·m−1 · s] 0.9c2
d1, “exact” turb. damping [N ·m−2 · s2] 1.0

d̂1, “heavy” turb. damping [N ·m−2 · s2] 1.5d1
ď1, “approx.” turb. damping [N ·m−2 · s2] 0.8d1
d2, “exact” turb. damping [N ·m−2 · s2] 1.50

d̂2, “heavy” turb. damping [N ·m−2 · s2] 1.25d2
ď2, “approx.” turb. damping [N ·m−2 · s2] 0.7d2

a1, “exact” separator [m] 3.0
â1, “heavy” separator [m] 1.5a1
ǎ1, “approx.” separator [m] 0.9a1
a2, “exact” separator [m] 4.0
â2, “heavy” separator [m] 1.25a2
ǎ2, “approx.” separator [m] 0.8a2
L2, “exact” shift [m] 3.0

L̂2, “heavy” shift [m] 0.8L2

Ľ2, “approx.” shift [m] 1.2L2

k, “exact” coupling stiffness [N ·m−σ ] 200.0

k̂, “heavy” coupling stiffness [N ·m−σ ] 1.5k

ǩ, “approx.” coupling stiffness [N ·m−σ ] 0.8k
L, “exact” coupling length [m] 0.5

L̂, “heavy” coupling length [m] 0.9L

Ľ, “approx.” coupling length [m] 1.3L
σ “exact” nonlinearity [nondimensional] 1.50
σ̂ “heavy” nonlinearity [nondimensional] 1.2σ
σ̌ “approx.” nonlinearity [nondimensional] 0.9σ

m1q̈1 + k1q1 − b1
(
a21 − q21

)
q̇1+

c1q̇1 + d1sign(q̇1)q̇21

− ksign(q2 − q1 − L)|q2 − q1 − L|σ = F1

m2q̈2 + k2(q2 − L2)− b2
(
a21 − (q2 − L2)2

)
q̇2+

c2q̇2 + d2sign(q̇2)q̇22+

ksign(q2 − q1 − L)|q2 − q1 − L|σ = F2

(1)

Parameters c1 and c2 correspond to the usual viscous
damping that is typical for low velocities, while d1 and d2
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belong to the drag force that normally is generated during
fast motion in turbulent gases or liquids. The oscillators are
coupled by a spring of zero force length L, and σ > 1
“nonlinearity parameter” according to which the differential
stiffness of the coupling spring varies with its compression
or dilatation. This system is evidently burdened with strong
nonlinearities therefore it can serve as a good paradigm for
our investigations.

III. RHC WITHOUT GRADIENT REDUCTION

The dynamic model in (1) is considered in a function format
as

q̈1(ti) = f1(q1(ti), q2(ti), q̇1(ti), q̇2(ti), F1(ti), F2(ti)),

q̈2(ti) = f2(q1(ti), q2(ti), q̇1(ti), q̇2(ti), F1(ti), F2(ti))
(2)

for each point of the horizon. The initial conditions, further-
more F1(t1), and F2(t1) determine q̈1(t1) and q̈2(t1). Based
on the possible interpretation of the forward differences, this
determines q̇1(t2) = q̇1(t1)+∆tq̈1(t1), and q̇2(t2) = q̇2(t1)+
∆tq̈2(t1). Again using the forward differences it is obtained
that q1(t3) = q1(t2) + ∆tq̇1(t2), and q2(t3) = q2(t2) +
∆tq̇2(t2). Therefore, the initial conditions and the forces in
the first grid point determine q1(t3) and q2(t3). Via continuing
this calculation with F1(t2) and F2(t2) the values q1(t4) and
q2(t4) can be computed, etc. Therefore, the force compo-
nents {F1(t1), . . . , F1(tN−2)}, and {F2(t1), . . . , F2(tN−2)}
determine the new coordinates {q1(t3), . . . , q1(tN )}, and
{q2(t3), . . . , q2(tN )}. The cost function of optimization may
have the form of

Ψ (F1(t1), . . . , F1(tN−2), F2(t1), . . . , F2(tN−2)) =

=

N−2∑
`=1

(
ψq1

(
qN1 (t`+2), qo1(t`+2)

)
+

+ψq2
(
qN2 (t`+2), qo2(t`+2)

))
+

+

N−2∑
`=1

(ψF1 (F1(t`)) + ψF2 (F2(t`))) ,

(3)

in which the contributions {ψq1
(
qN1 (t`+2), qo1(t`+2)

)
} denote

the cost contributions for the tracking error of variable q1,
{ψq2

(
qN1 (t`+2), qo1(t`+2)

)
} mean similar terms for track-

ing the coordinate q2, {ψF1 (F1(t`))} and {ψF2 (F2(t`))}
are the penalty contributions for the applied control forces.
The optimized trajectories {qo1(t`)}, {qo2(t`)}, their time-
derivatives {q̇o1(t`)}, {q̇o2(t`)}, and second time-derivatives
{q̈o1(t`)}, {q̈o2(t`)} are built up of the initial conditions and
the control forces. The ψq1, ψq2, ψF1, and ψF2 functions may
have various forms, they can differ from each other even in
the different grid points, too. On this reason the heuristic RHC
method obtains a high degree of flexibility.

For the minimization of (3) in principle the GDA algorithm
can be used via calculating ∇Ψ. Its success evidently may
depend on the structure of the cost functions.

Instead of the complicated cost functions of [21], the
simple ones of common shape were applied for both trajectory
tracking, and force limitation. The functions had the “width

parameter” (wq > 0 for trajectory tracking, and wF > 0
for the force limitation, respectively), and linear increase or
“steepness parameter” (sq > 0 for trajectory tracking, and
sF > 0 for force limitation, respectively), as follows:

ψ(x) =

 ψ = −s(x+ w) if x ≤ −w
ψ = 0 if − w < x ≤ w
ψ = s(x− w) if w < x

. (4)

This function can be so interpreted that small values, i.e.,
that for which |x| ≤ w are tolerated without causing any
cost contribution, but the terms with greater absolute values
generate finite, nonzero contribution. The linearity in cost
generation is expected to evade the occurrence of numerical
overflow problems. In the range of the occurring numerical
values smoothed version of the above cost function in the form

Ψ = a|x|n (5)

was also used for the sake of comparison. The new parameters
were so fitted that at x = 2w the new function value had to
be equal to the original resulting

a(2w)n = s(2w − w) resulting

a =
sw

(2w)n
.

(6)
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Fig. 1. The original and smoothed cost functions for trajectory tracking,
n = 1.5 (LHS: sq = 500m−1, wq = 10−4m) and for force limitation
(RHS: sF = 10.0N−1, and wF = 1500.0N)

The next question is how to speed up the classic “Gradient
Descent Algorithm” for finding the local minima. Normally
the procedure is stopped when the reduced gradient becomes
“zero”. However, in a numerical solution, during finite time,
only some “approximation of 0” can be achieved, on which
the time-need of the method can drastically depend. Here the
method suggested in [21] was applied.

In the first step it was assumed, that –as in the case of
the Newton-Raphson Algorithm (e.g., [23])– that in a singe
step the value of zero as absolute minimum of the error can
be achieved. This corresponds to a step −αβ∇ψ(x) in which
β‖∇ψ(x)‖2 = ψ(x) with a starting value of α = 1. This
step-length was maintained while the condition ψ(x(n+1)) <
ψ(x(n)) was met. If ψ(x(n + 1) ≥ ψ(x(n))) happened, the
positive parameter α was halved. This procedure was repeated
until the last value of α achieved one tenth of its initial value.
Then the procedure was stopped and the so found value x was
accepted. Since later it was experimentally observed that this
solution sometimes can “stick in” in certain point, maximum
number of allowed steps was limited to 100.
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Since the so optimized trajectory qo(t) can be quite
noisy, according to an idea borrowed from [24], it was
smoothed/filtered by a simple low pass filter by tracking it
according to the equation(

Λf +
d

dt

)3

qof (t) = Λ3
fq
o(t) (7)

with the initial conditions qof (t0) = 0, q̇of (t0) = 0, and
q̈of (t0) = 0. Following that a kinematically designed fixed
point iteration-based tracking was planned for the actual
trajectory q(t) as(

Λ +
d

dt

)3 ∫ t

t0

(
qof (ξ)− q(ξ)

)
dξ ≡ 0 . (8)

The adaptive controller tried to realize (8) according to the
principles published in [25]. This approach is based on the
idea of the “response function”, that in the case of a second
order system takes the fact into consideration that in the given
physical state of the system {q(t), q̇(t)}, the actual control
force F (t), immediately determines the realized 2nd time-
derivative as q̈(t) = F (q(t), q̇(t), F (t)), in which the force is
computed by using the available approximate inverse dynamic
model as F (t) = F̂−1

(
q(t), q̇(t), q̈Des(t)

)
. Altogether this

results a function in the form q̈(t) = R
(
q(t), q̇(t), q̈Des(t)

)
in which q̈Des(t) can be very quickly (even abruptly) var-
ied, while its other arguments, i.e., q(t) and q̇(t) vary only
slowly, therefore approximately it can be stated that q̈(t) u
R
(
q̈Des(t)

)
, i.e., the slowly varying parts are approximated as

parameters. According to this approach, in the case of a digital
controller, during one control cycle only one step of modifi-
cation is possible in the input argument qDes(t). The basic
idea is the construction of a deformation qDes(t) 7→ qDef (t)
so that q̈Des(t) = R

(
q̈Def (t)

)
. Evidently, in the case of a

strongly nonlinear system, especially in the lack of knowledge
on the exact model parameters, this deformation cannot be
computed in a single step because even the exact form of the
function R (q̈(t)) is unknown, too. However, by observing the
appropriate input – output pairs, the behavior of this function
can be experimentally observed in similar manner as a car
driver observes and learns the behavior of a different car. Let
∆x be a small variation in the input argument for which the
variation of the output will be

∆R := R(x+ ∆x)−R(x) u
∂R(x)

∂x
∆x . (9)

This function can be called “approximately direction keeping”
if ∆RT∆x > 0, i.e., the angle between the two vectors is
acute. Since for an arbitrary quadratic real matrix M can be
decomposed as a sum of its symmetric and skew-symmetric
parts

∆xT
1

2

[(
M +MT

)
+
(
M −MT

)]
∆x =

=
1

2
∆xT

(
M +MT

)
∆x ,

(10)

due to symmetry reasons only its symmetric part plays role in
the direction keeping property. Let x? be so chosen that the

desired goal, i.e., g is the output of this function: g = R(x?).
Let α > 0 a small positive number, and consider the sequence
of points generated as {xn+1 = xn + α(g − xn)}. For this
sequence the following estimation can be done:

R(xn+1) u R(xn)− α∂R
∂x

(R(xn)− g) (11a)

R(xn+1)− g u
[
I − α∂R

∂x

]
(R(xn)− g) . (11b)

Evidently, if the matrix M := ∂R
∂x in (11b) is approximately

direction keeping, for an arbitrary vector w it can be written
that

‖(I − αM)w‖2 = wT (I − αMT )(I − αM)w = (12a)

= ‖w‖2 − αwT
(
MT +M

)
w + α2wTMTMw , (12b)

where in (12b) the first term is negative for an approximately
direction keeping function, while the last one is always pos-
itive. Since the negative term is proportional to the small α,
while the positive one is proportional to α2, with a cautiously
chosen α it can be achieved that xn → x?, and R(xn) →
R(x?) = g. A mathematically more formal proof can be based
on Banach’s fixed point theorem [26]. Of course, the input
values can be slightly adjusted to approach towards the goal
in various manners than using a small parameter α > 0. In
this sequence generation method one cannot easily determine
whether an ad hoc choice for α will be good enough, i.e., it
will result at least a convergent sequence and that the conver-
gence will be fast enough for the purposes of the controller. To
reduce this burden in the design, in [25] a more stable design
method was suggested. Each vector under consideration was
so augmented by a physically not interpreted new dimension,
that they obtained identical Frobenius norms. Consequently it
became possible to rotate these vectors into each other with a
full angle, or it was possible to move toward each other with
an interpolated rotational angle. The interpolation happened by
modifying the full angle of rotation. Evidently, the physically
interpreted projections of the augmented vectors also moved
toward each other. By choosing a large common norm the
occurrence of only small angles of rotation can be guaranteed,
and the interpolation factor can be easily set. The necessary
rotations can be expressed in closed analytical form by the
generalization of the Rodrigues formula [27].

IV. THE SIMULATION RESULTS

In the simulations acceptable discrete step length that is
appropriate to the dynamics of the nominal trajectory to be
tracked as well as to the additional dynamic burden of the con-
troller’s PID-type trajectory corrections must be determined.
Instead complicate theoretical considerations simulations can
be done for a stable system at time resolution ∆t with digital
horizon length H that must be compatible with that obtained
for a resolution of ∆t/2, 2H . As a result of such simulations
the control parameters given in Table III were obtained.
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TABLE III
THE CONTROL PARAMETERS USED IN THE SIMULATIONS.

Parameter Unit Value
∆t, time-resolution [s] 10−3

H , horizon length in ∆t units [nondimensional integer] 12
wq , tracking error tolerance [m] 10−4

sq , tracking error steepness m−1 500.0
wF , force tolerance [N], 1500

sF , force penalty steepness,
[
N−1

]
101

Λf , noise filtering parameter
[
s−1

]
100.0

Λ, adaptive tracking parameter
[
s−1

]
30.0

Ra, common augmented ‖q̈‖
[
m · s−2

]
106

λa, adaptive interpolation factor [nondimensional] 0.8

The impart of force limitation is examined using simulation
results for both the original cost and the smoothed cost
function. According to the simulation pair wF = 1500 N, sF =
10 N−1 the Trajectory Tracking of the original cost function in
Fig. 2 reveals that the controller follows the optimal trajectory
with high amount of error. Therefore, it is well revealed that
the force limiting cost contributions can corrupt the trajectory
tracking precision for the overestimated heavy dynamic model
that needs higher forces than the less heavy realistic one.
However, the distorted optimized trajectory is well tracked by
the adaptive controller, too. Fig. 6 reveals that the adaptive
control forces remained in the reasonable order of magnitude
and do not show hectic variation, due to the efficient noise
filtering strategy applied for tracking the optimized trajectory.
The tracking error that can be observed in the free of force
limitation case mainly is generated by this simple low pass-
type filter. Figs. 7, 8 and 9 clearly testify the efficiency
of the adaptation mechanism: due to the considerable extent
of the adaptive deformation the realized and the desired 2nd
time-derivatives are in each other’s close vicinity, due to which
the kinematically designed tracking policy is quite precisely
realized. Fig. 10 testifies that the drastic force limitation
sometimes results in quite small computational time, but this
effect is not even therefore its advantages can be realized
mainly in offline applications.

The counterparts of Figs. 2, 3 and 4 that belong to the
trajectory tracking of the smoothed cost function are described
in Figs. 11, 12 and 13. It is clear that quite similar effects
caused by the force limitation can observed in the case of a
smoothed cost function as in the case of the original cost func-
tion one. Fig. 16 reveals that the fluctuation of the optimized
control forces is considerably has been reduced due to the
smooth nature of the cost function. Fig. 17 shows smoothly
varying adaptive control forces and according to Fig 18 it can
be stated that mechanism of adaptation worked well. too. In
Fig. 19 it can observed that the computational time-need is
more even in the case of the smooth cost function, so it does
not allow to spare too much time in the offline applications.
The computational need of the optimization was estimated
for Julia language version 1.8.1 (2022-09-06) running
under Linux 5.10.84-1-MANJARO x86_64 21.2.0
Qonos on a DELL inspiron 15R laptop.
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Fig. 2. Trajectory tracking of the original cost functions without (LHS) and
with force limitation (RHS) with wF = 1500 N and sF = 10 N−1 (RHS)
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Fig. 3. The “nominal-optimal” trajectory tracking error of the original cost
functions without (LHS) and with force limitation (RHS) with wF = 1500 N
and sF = 10 N−1 (RHS)
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Fig. 4. The “optimal-realized” trajectory tracking error belonging to the
original cost functions without (LHS) and with force limitation (RHS) with
wF = 1500 N and sF = 10 N−1 (RHS)
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sF = 10 N−1 (RHS)
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sF = 10 N−1 (RHS)
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sF = 10 N−1 (RHS) – zoomed in excerpts
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Fig. 10. The computational time of the main cycle belonging to the original
cost functions without (LHS) and with force limitation (RHS) with wF =
1500 N and sF = 10 N−1 (RHS)
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Fig. 12. The “nominal-optimal” trajectory tracking error of the smoothed cost
functions without (LHS) and with force limitation (RHS) with wF = 1500 N
and sF = 10 N−1 (RHS)
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Fig. 13. The “optimal-realized” trajectory tracking error belonging to the
smoothed cost functions without (LHS) and with force limitation (RHS) with
wF = 1500 N and sF = 10 N−1 (RHS)
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Fig. 14. The 2nd time derivatives belonging to the smoothed cost functions
without (LHS) and with force limitation (RHS) with wF = 1500 N and
sF = 10 N−1 (RHS)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [s]

400

200

0

200

[m
 

s
2
]

2nd Time-derivatives, PID, = 30.0

qDes1

qDef1

q1

qDes2

qDef2

q2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [s]

300

200

100

0

100

200

300

400

[m
 

s
2
]

2nd Time-derivatives, PID, = 30.0

qDes1

qDef1

q1

qDes2

qDef2

q2

Fig. 15. The 2nd time derivatives belonging to the smoothed cost functions
without (LHS) and with force limitation (RHS) with wF = 1500 N and
sF = 10 N−1 (RHS) – zoomed in excerpts
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Fig. 16. The optimized control forces belonging to the smoothed cost
functions without (LHS) and with force limitation (RHS) with wF = 1500 N
and sF = 10 N−1 (RHS)
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Fig. 17. The adaptive control forces belonging to the smoothed cost functions
without (LHS) and with force limitation (RHS) with wF = 1500 N and
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V. CONCLUSIONS

In this paper a heuristic “Adaptive Receding Horizon Con-
troller” (ARHC) was studied in which tracking the “nominal
trajectory” was formulated as minimizing a cost term by
the use of a “heavy dynamic model”, and the so obtained
“optimized path” was adaptively tracked by the use of a
“less heavy engine” for which only an approximate dynamic
model was available. The optimization phase is based on
numerical computations only, no any measurement is nec-
essary in it, since the “heavy dynamic model” as well as
the nominal trajectory to be tracked are a priori known.
For reducing the computational burden of optimization the
heavy dynamic model was directly used in building up the
horizon with forward differences, therefore the number of
the free variables of optimization was drastically decreased,
neither the computation of constraint terms, nor gradient
reduction with Lagrange multipliers were necessary. The usual
quadratic cost functions were substituted by much simpler
ones consisting of constant zero regions for tolerated errors
with linearly increasing “edges” outside of these regions to
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Fig. 19. The computational time of the main cycle belonging to the smoothed
cost functions without (LHS) and with force limitation (RHS) with wF =
1500 N and sF = 10 N−1 (RHS)

evade numerical overflow problems. For comparison, smooth
cost functions were also fitted to these functions within a
region of practical interest. The optimization was realized by a
combination of the gradient descent and the Newton–Raphson
methods. This approach drastically reduced the computational
burden of optimization. For tracking this optimized trajectory
a Fixed Point Iteration-based adaptive controller was applied.
In general this approach needs only the measurement of the
actually controlled components of the system’s state variable,
therefore it is much simpler than the Lyapunov function-based
approaches in which either measurement or at least estimation
of the full state variable is needed.

The operation of the suggested method was exemplified by
two nonlinearly coupled van der Pol oscillators as a paradigm
of nonlinear dynamical system. According to the simulation
results the method seems to be promising for breaking out of
the realm of the traditional quadratic cost functions and linear
time-invariant dynamic models.

The application of the method can be so interpreted that if
in the offline simulations the force limitations do not consid-
erably distort the nominal trajectory, the optimized trajectory
obtained for the heavy model surely can be tracked by the less
“heavy” engine.
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[25] B. Csanádi, P. Galambos, J. Tar, G. Györök, and A. Serester, “A novel,
abstract rotation-based fixed point transformation in adaptive control,” In
the Proc. of the 2018 IEEE International Conference on Systems, Man,
and Cybernetics (SMC2018), October 7-10, 2018, Miyazaki, Japan, pp.
2577–2582, 2018.

[26] S. Banach, “Sur les opérations dans les ensembles abstraits et leur ap-
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