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Abstract—In control applications the use of noise-burdened
sensor signals cannot be evaded. Also, certain signals can be lost.
This problem traditionally is tackled by the use of Kalman filters
that provide some “optimal solution” to these problems based on
reasonable assumptions that are not always well underpinned in
the practice. These are assumptions are made with regard to the
system model and the statistical distribution of the noise signals.
The Fixed Point Iteration-based adaptive controller is applicable
for various strongly nonlinear models. Because feeding back the
order of time-derivative of the system’s variable that immediately
can be varied by the control signal, its noise sensitivity can be
considerable. In this paper the operation of an unscented Kalman
filter-based technique is compared with that of a simple moving
window with affine signal approximation, and the use of a third
order low pass filter in the control of a modified van der Pol
oscillator. In this model a quadratic drag term is added to the
original model to describe the motion of the system in turbulent
fluid environment. According to the numerical simulations it
can be stated that the simpler methods can replace the more
complicated Kalman filter.

Index Terms—unscented kalman filter, fixed point iteration-
based adaptive control, nonlinear dynamic systems, noise filtering

I. INTRODUCTION

The usual “Resolved Acceleration Rate Controllers” (e.g.,
[1]–[3]) normally apply the feedback of the tracking error,
its time-integral, and first time-derivative. The measurement
noise if their input may be considerable. The “Acceleration
Feedback Controllers” that are in use from the Nineties of
the past century (e.g., [4]–[7]). Since they also feed back a
second order derivative, they may be even more noise sensitive
solutions. The “Fixed Point Iteration-based Adaptive Con-
trollers (FPIBADC)” introduced in 2009 in [8], and sketched
in Fig. 1 also feed back the second time-derivative of the
controlled variably. Consequently, the noisy nature of this
signal may cause practical problems and may require efficient
noise filtering solutions in the case of this controller, too.

The present paper is an extended version of the conference
publication [9] in which preliminary steps were made for the
investigations aiming at the applicability of Kalman filter for
our purposes.

We acknowledge the support of this work by the Doctoral School of Applied
Informatics and Applied Mathematics of Óbuda University.
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Fig. 1. The schematic structure of the “Fixed Point Iteration-based Adaptive
Controller” for a second order dynamical system (after [8])

According to Fig. 1, it is assumed that variable q(t) can
be measured with an additive noise term N (t) therefore the
observed coordinate is modeled as qo(t) = q(t) + N (t). In
the block “Kinematics (PID)” for instance a PID-type error
feedback can be formulated according to (1) that is able to
asymptotically drive the tracking error to zero if it is precisely
realized

e(t) := qN (t)− q(t), eint(t) :=

∫ t

t0

e(ξ)dξ ,(
Λ +

d

dt

)3

eint(t) ≡ 0 yielding

q̈Des(t) = q̈N (t) + Λ3eint(t) + 3Λ2e(t) + 3Λė(t) .

(1)

In (1) the integral, the order zero, and the first time-derivatives
of the noisy signal q(t) occur in the feedback loop of the PID-
type controller. In the block “Deformation” an appropriate
function

q̈Def (t+ τ) = G
(
q̈Def (t), q̈(t), q̈Des(t+ τ)

)
(2)

can be applied by the use of which on the basis of the
observed behavior of the controlled system at time instant t
(i.e., the realized q̈(t) system response that was obtained for
the deformed control signal q̈Def (t)), and the kinematically
designed desired value for t+ τ are utilized in the calculation
of the next deformed value q̈Def (t+ τ). Since normally both
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the Exact Model’s and the available Approximate Model’s
response depend on the actual q(t) and q̇(t) values, it can
be written that

q̈(t) = f
(
q̈Def (t), q(t), q̇(t)

)
≊ f

(
q̈Def (t)

)
, (3)

since q̈Def (t) can be abruptly modified by the controller while
q(t) and q̇(t) can vary only slowly, consequently they can be
considered rather as “parameters” than “variables” of this
function. In this approximation (2) can be written as

q̈Def (t+ τ) = G
(
q̈Def (t), f

(
q̈Def (t)

)
, q̈Des(t+ τ)

)
, (4)

the parameters of which are slowly varying. In the case of
a digital controller, the minimal possible delay time τ is the
duration of one digital control cycle. The transformation of
the task of finding the appropriate q̈⋆ deformed input signal in
(4) into a fixed point problem so that

q̈⋆ = G
(
q̈⋆, f (q̈⋆) , q̈

Des
)

while f (q̈⋆(t)) = q̈Des(t) (5)

was called as fixed point transformation. For this purpose
various possible solutions were suggested (e.g., in [8], [10]–
[13]). The parameters of the function in (4) mus be so
chosen that around the fixed point of the function, i.e., q̈⋆
G must be contractive for the given q̈Des(t). Then, ac-
cording to Banach’s fixed point theorem [14] the sequence{
q̈Def
i+1 = G

(
q̈Def
i , f

(
q̈Def
i

)
, q̈Des(t)

)}
with the initial el-

ement qDef
1 = q̈Des(t) converges to the unique solution:

qDef
i → q̈⋆. For guaranteeing contractivity the free parameters

of function G must be appropriately set. Because during one
digital control step only one step of this adaptive iteration can
be done, in the practice it converges during a few steps that
does not mean problem because according to the kinematic
design q̈Des(t) varies only slowly. Following the initial phase
of convergence qDes(t) “drags” with itself q̈⋆(t). For obtain-
ing precise trajectory tracking beside the fact of convergence
its speed is an important factor: the “dynamics” of q̈Des(t)
must be tracked with appropriate speed.

The noise-sensitivity of this method originates from two
essential sources:

• from the kinematic design in (1): the controller may have
precise information on the nominal trajectory, therefore
qN (t), q̇N (t), and q̈N (t) are precisely known but the
actual values q(t), q̇(t), and q̈(t) are not known; instead
of q(t) its noisy measured value qo(t) is available, and
in the place of q̇o(t) some estimated values must be put;

• also, in the adaptive feedback, in the place of q̈(t) some
estimation of q̈o(t) must be put.

In the sequel at first two “simple” filtering techniques will
be considered, and finally an attempt is made for the use of
an unscented Kalman filter.

II. THE NOISE FILTERING TECHNIQUES INVESTIGATED

As in the preliminary conference version of the present
paper, i.e., in [9] the variants as follows were investigated.

A. Application of Moving Window with Affine Signal Approx-
imation

For averaging out the consequences of noisy measure-
ment, in [13] a moving window of buffer length L ∈
N was introduced. It was filled in with the latest ob-
served values as {qo(ti−L+0), q

o(ti−L+1), . . . q
o(ti−L+L)},

i.e., {qo(ti−L+m)}, m = 0, 1, . . . , L. The content of this win-
dow was approximated with an affine model form {a0m+ b0}
that allows a “filtered” identification of the first time-derivative
related to the coefficient a0. After fitting the parameters a0, b0
with the least squares error, the smoothed value q̃o(i) =
a0L+b0 was chosen at the end of the window. For the filtered
approximation ˙̃qo(ti) = q̃o(ti)−q̃o(ti−1)

δt was chosen. Follow-
ing that, the above calculated ˙̃qo(ti) values were put into
the grid points { ˙̃qo(ti−L+0), ˙̃q

o(ti−L+1), . . . ˙̃q
o(ti−L+L)}, and

were approximated with the same affine form as {a1m+ b1}.
The term ˙̃̃qo(ti) = a1L + b1 provided the filtered derivatives

as
˙̃̃
q̃o(ti). This scheme was continued for obtaining the filtered

substitute of q̈o(t).
In this case a special fixed point iteration was applied

that operated with the time-derivative of the deformed second
derivative generalized coordinate as in [13] as

dq̈Def

dt
:=

A

τ
σ

(
f
(
q̈Def (i)

)
− q̈Des

w

)
≈

≈ q̈Def (i+ 1)− q̈Def (i)

τ
,

(6)

in which σ(x) = x
1+|x| is a sigmoid function, parameter w

determines its steepness, and for R ∋ A < 0 can cause an
approximately exponential decrease of the argument. In the
simulations τ = δt = 10−3 s, w = 3m · s−2, A = −1.1 s−2,
and ΛFPI−1 = 24.0 s−1 in (1). The length of the digital filter
was L = 12 steps.

B. Application of an Efficient Third Order Low Pass Filter

In this case the noisy signal qo(t) = q(t)+N (t) was tracked
according to the differential equation(

λFPI−2 +
d

dt

)3

q̃o(t) = λ3FPI−2q
o(t) , (7)

with the initial conditions q̃o(t0) = 0, ˙̃qo(t0) = 0, and
¨̃qo(t0) = 0. This idea was borrowed from [15]. Evidently,
at zero frequency it has the transfer function value 1, while
for high frequencies it is ∝ s−3 for the variable of the Laplace
transform, i.e., it realizes drastic suppression for the high
frequency components. In the block “Kinematics (PID)” of
Fig. 1 the appropriate exponent in (1) was ΛFPI−2 = 16.0s−1,
λFPI−2 = 350.0s−1 was in use. The “Fixed Point Trans-
formation Function” applied in the block “Deformation” of
Fig. 1 in this case was the original “Robust Fixed Point
Transformation” published in [8] as

q̈Deform(ti+1) = (q̈Deform(ti) +Kc)·[
1 +Bcσ

(
Ac

[
f
(
q̈Deform(ti)

)
− q̈Des(ti+1)

])]
−Kc

(8)
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in which the same sigmoid function was in use as in (6), and
in the simulations Kc = 4 × 107 m · s−2, Bc = −1.05, and
Ac =

9×10−2

Kc
m−1 · s2 were applied.

C. Unscented Kalman Filter

The Unscented Kalman Filter is widely used for estimation
in the case of nonlinear systems wherever the full state
feedback is required. Its essence is the nonlinear “Unscented
Transformation” that calculates the statistical properties for
an arbitrary random variable [16]–[19]. In this approach the
nonlinear system is described as function of firstly the input
state variables qk in addition with which the process noise
wk−1 is considered, and secondly, the observed values or the
system measurements yk to which also is added a so called
“sensor noise” or “measurement noise” vk in (9) as

qk = f(qk−1, uk−1) + wk−1 , (9a)
zk = h(qk) + vk . (9b)

In this paper a strictly causal process was assumed with wk =
0, furthermore, it was assumed that the variables were directly
measurable, i.e., zk ≡ h(qk) = qk + vk was assumed. For the
discretized dynamic model (i.e., for the first equation of (9))
the approximation

q̇j ≈ q̇j−1 +
δt

m

(
−kqj − b(q2j − a2)q̇j + uj

)
,

qj ≈ qj−1 + δtq̇j ,
(10)

was applied on the basis of the dynamic model of the con-
trolled system in (11) that is the extension of the original van
der Pol oscillator [20] by adding the term dsign(q̇)q̇2 to its
equation of motion as

mq̈ + kq − b1(a
2 − q2)q̇ + b2q̇ + dsign(q̇)q̇2 = u (11)

with the model parameters given in Table I. (The original
system physically was an externally excited triode. For the
sake of simplicity here it is considered as a “mechanical” one.)

TABLE I
THE SYSTEM PARAMETERS

Parameter Exact Value Approx Value
Mass m [kg] 1.5 2.0

Spring stiffness k
[
N · m−1

]
125.0 150.0

Separator a [m] 2.1 1.2
Damp./Excit. coeff. b1

[
N · s · m−3

]
0.6 1.5

Damping coeff. b2
[
N · s · m−1

]
3.5 2.5

Quadr. damp. coeff. d
[
N · s2 · m−3

]
4.3 1.3

The “Extended Kalman Filter (EKF)”, in general, applies
the first order Taylor series approximation of the functions in
(9), therefore it is rather appropriate to tackle slight nonlinear-
ities. The new idea announced in [21] was that instead using
the Jacobians of the functions in (9), the state distribution
was specified by a minimal set of deterministically chosen
sample points of a Gaussian random variable (the so called
“sigma points”), and these points were propagated through the

nonlinear system. In this manner a better approximation was
obtained for the posterior mean and covariance that resulted
by the use of the Jacobians.

In our case the state vector is physically defined as q(k) =
[q̇k, qk], and the initial conditions of the mean is q̂0 = E[q0]
with the initial covariance P0 = E[(q0 − q̂0)(q0 − q̂0)

T ].
In every cycle the sigma points of the probability density
distribution (it is tacitly assumed to be Gaussian or “Normal”
distribution) are calculated for L = 2 as

χk−1 = [q̂k−1 ,

q̂k−1 +
√

(1 + λ)Pk−1, q̂k−1 +
√
(2 + λ)Pk−1,

q̂k−1 −
√

(1 + λ)Pk−1, q̂k−1 −
√
(2 + λ)Pk−1

] (12)

where q̂k−1 is a matrix of size 2 × 1, and the sigma points
are calculated by adding and subtracting to it the appropri-
ate columns of the “Lower Triangle Cholesky Factorization
Matrix” [22]. The definition of the parameters are given in
Table II. The dynamic model f(qk, uk) is evaluated via the
sigma points as χ∗

k|k−1 = f(χk−1, uk−1). The values of
the estimated prior state and covariance are computed by
multiplying their values by the weighted sample means Wm

i

and W c
i in (13)

q̂−k =

2L∑
i=0

Wm
i χ

∗
i,k|k−1

P−
k|k−1 =

2L∑
i=0

W c
i [χ

∗
i,k|k−1 − q̂k][χ

∗
i,k|k−1 − q̂k]

T+

+QNoise .

(13)

The process noise covariance QNoise ∈ R2×2 where it is set
to be [10−1; 10−3].

TABLE II
THE UKF SCALING PARAMETERS

Parameter Description Value
α Primary Scaling 10−2

β Secondary Scaling 10−3

κ Scalar 0.0
L State vector Dimension 2
λ Scalar α2(L+ κ)− L

Wm
0 Initial State Weight λ

L+λ

Wm
i State Weight 1

2(L+λ)

W c
0 Initial Covariance Weight λ

L+λ
+ (1− α+ β)

W c
i Covariance Weight 1

2(L+λ)

ΛUKF Positive constant in(1) [s−1] 36.0

Following that, UKF starts the correction phase for L = 2 as

χk|k−1 :=
[
q̂−k−1, q̂

−
k−1 +

+
√
(1 + λ)P−

k−1, q̂
−
k−1 +

√
(2 + λ)P−

k−1

q̂−k−1 −
√
(1 + λ)P−

k−1, q̂
−
k−1 −

√
(2 + λ)P−

k−1

]
.

(14)

Then the unscented transformation is done over the observed
values i.e., the sigma points are calculated by the function
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of γk|k−1 = h(χk|k−1) and then recombined to produce the
predicted measurement values ẑ−k =

∑2L
i=0 = Wm

i γi,k|k−1

and the predicted measurement covariance

Pz−
k z−

k
=

2L∑
i=0

W c
i [γi,k|k−1 − ẑ−k ][γi,k|k−1 − ẑ−k ]T +RNoise

(15)
where the measurement noise covariance RNoise ∈ R2×2 were
set to [10−2; 10−3]. The “trading values” between the state and
measurement are obtained by calculating the cross covariance
in (16)

Pqkzk =

2L∑
i=0

W c
i [χi,k|k−1 − q̂−k ][γi,k|k−1 − ẑ−k ]T (16)

that allows the computation of the Kalman gain Kgain =
PqkzkP

−1
qkzk

yielding the updated state variables and covariance
values as

q̂k = q̂−k +Kgain (ẑ − ẑ−) (17a)

Pk = P−
k −Kgain Pz−

k z−
k
KT

gain . (17b)

Normally it is not easy to find appropriate values for QNoise,
and RNoise. The literature generally recommends the use of
small (not zero) values the effects of which spread toward (13)
and (15). For making the most possible correct comparison
their values must be experimentally set achieve the best
behavior of the Kalman filter.

Because our system is a second order one, the noise distribu-
tions for q(t) and q̇(t) cannot be considered quite independent.
For instance, the latter term can inherit certain features if q̇(t)
is numerically computed from q(t). This issue is considered
in the sequel.

1) Assumptions Regarding the Inherited Noise Distributions
in UKF: In our paper, for the first derivative of the coordinate
value the following assumptions were utilized:

• Let xi denote the actual coordinate value at time instant
ti and let x̂i := xi + µi be its noisy measured value
that later will be used for numerical differentiation. It is
assumed that ∀ti the probability density distribution of
the additive noise component is φ(µ).

• Then by definition

E(µ) :=

∫
µφ(µ)dµ , (18a)

σ2(µ) :=

∫
φ(µ)(µ− E(µ))2dµ , (18b)∫

φ(µ)dµ = 1 . (18c)

where the assumption E(µ) = 0 is reasonable, and it
leads to σ2(µ) =

∫
φ(µ)µ2dµ.

• Let ψ(µi, µi−1) denote the probability density distribu-
tion of the measurements made in time instants ti and
ti−1. If δt is the time-resolution of the discrete differ-

entiation then the mean of the time-derivative computed
from the measured values will be

E

(
qi − qi−1

δt

)
=

=

∫ ∫
ψ(µi, µi−1)

xi + µi − xi−1 − µi−1

δt
dµidµi−1 ,∫ ∫

ψ(µi, µi−1)dµidµi−1 = 1 .

(19)
• For independent measurements necessarily
ψ(µi, µi−1) = φ(µi)φ(µi−1) that yields

E

(
xi − xi−1

δt

)
= 1

xi − xi−1

δt
+ 1E

(µi

δt

)
− 1E

(µi−1

δt

)
=
xi − xi−1

δt
.

(20)

• For the calculation of the standard deviation it is obtained
that∫ ∫

ψ(µi, µi−1)

(
xi + µi − xi−1 − µi−1

δt

− (xi − xi−1)

δt

)2

dµidµi−1 =

=

∫ ∫
ψ(µi, µi−1)

(
µi − µi−1

δt

)2

dµidµi−1

=

∫ ∫
φ(µi)φ(µi−1)

µ2
i + µ2

i−1 − 2µiµi−1

δt2
dµidµi−1

= 2
σ2(µ)

δt2
(21)

It must be noted that in the case of the first two methods
the “process noise” was not interpreted, only the “observation
noise” had physical meaning, i.e., the process was considered
strictly causal.

III. SIMULATIONS

The simulations were made with discrete time resolution
δt = 10−3 s. In contrast to the original conference paper [9]
the nominal trajectory was not a simple sinusoidal function of
time. It also contained nonlinear “quasi edges” or “corners”
around which drastic variations occurred in its time-derivative.
Simulations were made for noise-free case, for “small noise
amplitude” and “big amplitude” noise disturbances.

A. Default Comparisons: Noise-free Case

To study the “distorting nature” of the noise filtering
methods applied figures 2,3,4 were created. They reveal that
comparable results were obtained. The fluctuation that is
observable at the FPI-1 is the property of the “continuous
fixed point iteration method”.
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Fig. 2. Trajectory tracking (at the top) and trajectory tracking error (at the
bottom) without noise.
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B. Applying Small Amplitude Noise

In this case, the amplitude of applied noise is 10−5[m]
in which it will be examined in two cases: Gaussian and
Logistic distribution noise. This comparison is important since
the Kalman filter is optimized for the Gaussian noise while
the other two methods are neutral with regard to the noise
distribution.
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Fig. 5. Trajectory tracking (at the top) and its error (at te bottom) for small
amplitude Gaussian noise.
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Fig. 6. Tracking of the first time-derivative of the trajectory (at the top) and
its error (at the bottom) for small amplitude Gaussian noise.
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Fig. 7. Phase trajectory tracking for small amplitude Gaussian noise.

1) Small Amplitude Gaussian Distribution Noise: Fig-
ures 5,6,7 reveal that the “smoothest” result was obtained for
the simple low pass filter.

The Kalman filter became a little bit hectic, while the con-
tinuous fixed point iteration maintained its original fluctuation
that was slightly deformed by the noise. However, it yielded
the most precise tracking.
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Fig. 8. Trajectory tracking (at the top) and its error (at the bottom) for small
amplitude logistic noise distribution.
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Fig. 9. Tracking the first time-derivative of the trajectory (at the top) and its
error (at the bottom) for small amplitude logistic noise distribution.
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Fig. 10. The phase trajectory tracking for Noise Amplitude = 10−5 m.

2) Small Amplitude Logistic Noise Distribution: Fig-
ures 8,9,10 reveal similar behavior as that of the case of low
amplitude Gaussian noise distribution.

C. Applying Large Noise Amplitude

In the simulations of the noise amplitude is 10−4 m.
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Fig. 11. Trajectory tracking (at the top) and its error (at the bottom) for large
amplitude Gaussian noise distribution.
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Fig. 12. Tracking the first time-derivative of the trajectory (at the top) and
its error (at the bottom) for large amplitude Gaussian noise distribution.
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Fig. 13. Phase trajectory tracking for large amplitude Gaussian noise
distribution.

1) Large Amplitude Gaussian Noise Distribution: Fig-
ures 11-13 wel testify that the Kalman filter was very sensitive
to this noise, it provided hectic result, and the best tracking
was achieved again by the use of the simple low pass filter.
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Fig. 14. Trajectory tracking (at the top) and its error (at the bottom) for large
amplitude logistic noise distribution.
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Fig. 15. Tracking of the first time-derivative of the trajectory (at the top) and
its error (at the bottom) for large amplitude Logistic noise distribution.
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Fig. 16. Phase trajectory tracking for large amplitude logistic noise distribu-
tion.

2) Large Amplitude Logistic Distribution Noise: Based on
Figs. 14,15,16 it definitely can be stated that the Kalman filter
provided hectic and imprecise result that manifests itself as
some offset in the estimation of the coordinate and its first
time-derivative. Again, the best result was obtained for the
simple low pass filter.

IV. CONCLUSIONS

In this paper via simulation investigations it was revealed
that though in general the UKF is a very efficient noise reduc-

tion tool that can be used for the estimation of noisy signals in
the control of strongly nonlinear systems, its application to the
fixed point iteration-based adaptive control is not expedient.
This finding can be explained or understood on the basis
seemingly plausible considerations as follows. The Kalman
filter is optimized for Gaussian noise. Behind this fact the
tacit assumption is hidden that the noise spectrum is brought
about by a large number of unknown and independent factors.
However, if the primary cause of the measurement noise is
the numerical calculation of the derivatives of the signals of
digital encoders, this assumption is not relevant. The usual
formulation in the engineering literature that makes a second
order system’s state propagation equation similar to that of a
first order one as x1 = q, x2 = q̇ do not really work, because
these variables are essentially not independent. The Kalman
filter is mainly recommended for controlling systems that have
really first order dynamical models. Furthermore, it is based
on the assumption that the dynamic model is known, and in
the case of an adaptive control such an assumption is ab ovo
irrelevant.

It was found that much simpler and primitive “heuristic
methods” that are not related to the concept of optimization
for special noise distribution can provide acceptable results for
filtering noisy signals in the fixed point iteration-based adap-
tive control. As the less complicated and less computational
power-greedy solution the use of a simple low pass filter with
Euler integration can be recommended.

REFERENCES

[1] R. Campa, R. Kelly, and E. Garcı́a, “On stability of the resolved accel-
eration control,” In Proc. of the 2001 IEEE International Conference on
Robotics & Automation, Seoul, Korea, May 21-26, 2001, pp. 3523–3528,
2001.

[2] M. Mailah, E. Pitowarno, and H. Jamaluddin, “Robust motion control
for mobile manipulator using resolved acceleration and proportional-
integral active force control,” International Journal of Advanced Robotic
Systems, vol. 2, no. 2, pp. 125–134, 2005.

[3] B. Dariush, G. B. Hammam, and D. Orin, “Constrained resolved
acceleration control for humanoids,” In Proc. of the 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems, October
18-22, 2010, Taipei, Taiwan, pp. 710–717, 2010.

[4] S. J. Dyke, Acceleration Feedback Control Strategies for Active and
Semi-Active Control Systems: Modeling, Algorithm Development, and
Experimental Verification (PhD Dissertation). Department of Civil
Engineering and Geological Sciences, Notre Dame, Indiana, 1996.

[5] W. Xu and J. Han, “Joint acceleration feedback control for robots:
analysis, sensing and experiments,” Robotics and Computer Integrated
Manufacturing, vol. 16, pp. 307–320, 2000.

[6] W. Xu, J. Han, and S. Tso, “Experimental study of contact transition
control incorporating joint acceleration feedback,” IEEE/ASME TRANS-
ACTIONS ON MECHATRONICS, vol. 5, no. 3, pp. 292–301, 2000.

[7] Q. Wang, H.-X. Cai, Y.-M. Huang, L. Ge, T. Tang, Y.-R. Su, X. Liu,
J.-Y. Li, D. He, S.-P. Du, and Y. Ling, “Acceleration feedback control
(AFC) enhanced by disturbance observation and compensation (DOC)
for high precision tracking in telescope systems,” Research in Astronomy
and Astrophysics, vol. 16, no. 8, p. 124, 2016.
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Unknowns],” Bulletin Géodésique, vol. 2, pp. 66–67, 1924.

16

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 2, NO. 2, DECEMBER 2022, pp. 9-16

 
 


