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Université Paris-Saclay, CNRS, CentraleSupélec
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Abstract—This paper presents a Baseline Removal
method in the context of spectrometry gamma. The
method implements an estimator for the full contin-
uum based on the observation of local minima. This
estimator is constructed from the statistical properties
of the signal and is therefore easily explainable. The
method involves a limited number of fixed parameters,
which allows the automation of the process. Moreover,
the method is adaptable to any peaks width, which
makes it suitable for both HPGe spectrometers and
scintillators. Application to real gamma spectrometry
measurements are presented, as well as a discussion
about the choice of the parameters, for which an ad-
justment is proposed.

Index Terms—background removal, baseline correc-
tion, gamma spectrometry, continuum estimation, peak
characterization, local minima

I. Introduction
A. Context

Gamma spectrometry is a common nuclear measure-
ment technique which can be used for the detection of
radioactivity, identification of radionuclides, and quantifi-
cation of radioactive material. Eventhough other methods
exist, in practice, the gamma spectrometry often consti-
tutes the only possible and effective technique, especially
for waste characterization [1]. As a consequence, gamma
spectrometry has become essential in the nuclear sector.

One will find in [2] a complete description of gamma
rays Physics as well as a number of details relating to
the measurement device. The result of a measurement
is a histogram, called spectrum, which spreads detected
photons by channels each corresponding to an interval of
energy. All spectra have the same structure, that is to
say a superposition of a background with peaks specific

to some radionuclides, covered by an observation noise.
Peaks are mathematically described by a mixture model,
usually Gaussian [2, section 9.6] [3, p.229] but not only
[4], which contains a great deal of useful information. On
the opposite, the background, also called continuum which
is rather regular and smooth contains few information (at
least, with regard to the peaks).

The purpose of the spectrum analysis is to estimate
the mixture parameters from the data. Consequently,
continuum is of little interest and one of the major issue
of the spectrum analysis is to isolate the mixture from
the continuum. Baseline Removal (BR) methods enable
to estimate the continuum without any consideration for
the peak mixture, then to subtract it from the spectra in
order to isolate the peak mixture. This technique can also
be found in Literature under the appellation ”background
correction”, or a mix of both expressions. However, ”base-
line” is less ambiguous than ”background” which may also
refers to the radiation from the environment. Moreover,
”removal” is more appropriate that ”correction” because
it would implies the continuum to be an error, which is
not the case.

B. State of the Art
BR techniques is is a recurrent topic in gamma spec-

trometry, but also in other spectroscopy issues [5]. From
the very beginning in the 70s to nowadays, two distinct
strategies have been brought to light: local and global.

Local Baseline Removal (LBR) methods enable to esti-
mate derive a local estimate of the continuum on a given
Region Of Interest (ROI) of the spectrum, i.e. in the
vicinity of a peak, by the observation of points of the pure
continuum at the outer left and right borders of the ROI
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[6] [7] [8] [9] [2, sections 5.4]. LBR requires to established
the ROI beforehand by the use of a Peak Detection (PD)
method.

Full Baseline Removal (FBR) methods estimate the
whole continuum of the spectrum, without introducing the
concept of ROI, and does not rely on a PD method. Among
FBR techniques, one finds filtering [10], peak erosion
[11] [12] [13] [3, p.256] [14], penalizing or regularization
criterion [15] [16] [17] [18] [19] [20] [21] [22] [23], and
observation of local minima [24] [25] [26] [27] [28] [29].

Nowadays, those propositions were naturally ranked by
the operating experience, and LBR [2, sections 5.4] cou-
pled to the PD second derivative method [30] is commonly
used and officially recommended [31] [32]. This method
chiefly draws its success from its simplicity and explain-
ability. However, it remains difficult to be automated and
may fail in the presence of Compton edges or multiplets,
i.e. mixtures of close overlapping peaks. On the other
hand, a large number of proposed global methods involve a
model for the continuum (splines, Gaussian processes etc),
which introduce an improper regularity prior: continuum
often contains discontinuities which are difficult to model.
Thus, spectrum analysis is still an active research topic.

C. Content
Beyond the performance criterion, an ideal method

should enables the automation of the analysis with a
large scope of application. It shall deal with various peaks
shapes and widths, with various radiation detectors tech-
nologies, i.e. Hyper Pure Germanium (HPGe) detectors as
well as scintillators. The method shall admit a reduced set
of parameters independent from the observation.

The central idea of the present study relies on the
following empirical observation: local minima rarely ap-
pear on peaks. Thus, it would be possible to estimate the
continuum from local minima. As mentioned in the state
of the Art, several authors have approached this idea, but
the work of Tervo et al. [27] is the most accomplished:
it enables to simplify the estimation of the continuum
without any prior nor any parameters. However, this
estimator only works with thin peaks which quickly limits
its use for real applications.

This paper takes up, corrects and extends previous de-
velopments [33]. This work presents a BR method adapted
to gamma spectrometry also based on the observation of
local minima. Fig. 1 presents the application of the method
of Tervo and of the new method on two representative
spectra. The improvement is easily noticeable on the
figure, and shows that the new method covers a much
wider range of spectra configurations (the comparison will
be detailed in part IV). The resulting process is simple to
apply. The paper is focused on the statistical phenomenon
which enables the method to give good results.

Section II, on one hand, gives a definition of the
spectrum. On the other hand, it deducts a number of
inherent signal properties on which is built the continuum

estimation procedure in section III. Section IV comments
the real spectra application, and section V concludes this
work.

II. Spectrum signal properties
This section aims at formalizing the problem and pro-

poses some general properties about a gamma spectrum
and its components.

A. Basic assumptions
Let yyy denote the observed gamma spectrum of n chan-

nels such that yyy = (y1, . . . , yn). Let mmm = (m1, . . . , mn)
denote the peaks mixture and ccc = (c1, . . . , cn) the con-
tinuum. Denoting P the Poisson’s distribution, Physics
states [2, section 5.2] yyy is a sample from a random vector
YYY = (Y1, . . . , Yn) such that:

Yk ∼ P(µk) (1)

where µµµ = mmm + ccc is the noiseless signal.
Poisson distribution is not practical to handle in literal

calculations. Denoting N the normal distribution and
assuming that the spectrum has a sufficient number of
count per channel, the following approximation is possible
[34, section 2.7.3]:

P(µk) ≈ N (µk, µk) (2)

By the properties of the Poisson distribution [34, section
13.5.5], yk is itself an estimate for µk and the associated
confidence interval with symmetric risks of level 1 − η is:

1
2χ2

2yk;η/2 ≤ µk ≤ 1
2χ2

2(yk+1);1−η/2 (3)

where χ2
v;η is the quantile of order η of a χ2 distribution

with v degrees of freedom. Using this property in order to
quantify the variance of the observation, one may assume
the following hypothesis:

Hypothesis 1: {
Yk ∼ N (µk, σ2

k)
σ2

k = yk
(4)

The issue can now be specified: knowing yyy, how to
estimate ccc? Because mmm is also unknown, the problem
is unsolvable at this stage: a prior is required. In the
paragraphs below, one is looking for a discrimination
criterion, through the definitions of peaks and continuum,
which may be used as the missing constraint.

B. Signal characterization
Let introduce the differential operator ∆xk = xk −xk−1.

The continuum is characterized by its low variations.
Thus, continuum variations are majorated:

∃β, ∀k, |∆ck| ≤ β (5)

A peak has characteristic areas. A top, at the center, has
high values and low variations. Two flanks, uprising and
downrising on both sides of the top, have high variations,
especially in comparison with continuum variations. Two
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Fig. 1: Confrontation of continuum estimation methods on real spectra. On top is a HPGe spectrum, on the bottom
a scintillator spectrum. Both are plotted with a log scale. Blue lines represent the observation. Orange lines represent
the reference estimates of Tervo’s method. Black lines represent the new method results, applied with parameters
tbreak = 3, wopt = 15, wf = 11, of = 1 and w = 6 for HPGe, w = 80 for scintillator.

flats at the borders have low values and low variations.
Let denote F the set of all flanks in the spectrum. Then,
F contains all tops and flats. The borders of the areas are
thereby defined by means of a threshold α such that:

β ≤ α, ∀k ∈ F, α ≤ |∆mk| (6)

The unfixed threshold α is a necessary scaling variable,
and its choice is a matter of convention. Indeed, what
could be considered as a peak in a certain context could be
considered as a continuum contribution in another. Fig. 2
shows a mono peak signal with a constant continuum.
Choosing α = 50, resulting F areas are represented with
grey bands.

As a consequence of the previous definitions, one can
deducts a lower bound for the variations of the signal:

Property 1:

∀k ∈ F, α − β ≤ |∆µk| (7)

C. Counter variations
Let denote respectively F+ and F− the set of increasing

flanks and the set of decreasing flanks:{
F+ = {k ∈ F|α ≤ ∆mk}
F− = {k ∈ F|∆mk ≤ −α} (8)

∀k ∈ F let Fk be the probability to have a counter-
variation in yyy at k. More specifically, Fk is the probability
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Fig. 2: Identification of peak’s areas on a Gaussian ex-
ample. Dark full line represents the signal µµµ, blue points
represent observations yyy, grey bands indicates F, orange
crosses represent AlimAlimAlim, red crosses represent AAA.

for yyy to decrease where mmm is increasing, or to increase
where mmm is decreasing:

Fk = P (∆Yk ≤ 0|k ∈ F+) (9)
= P (0 ≤ ∆Yk|k ∈ F−) (10)

Notice that Fk is almost the repartition function of ∆Yk ∼
N (∆µk, σ2

k + σ2
k−1) evaluated at 0. Let denote Φ(.) the

cumulative distribution function (CDF) of the standard
normal distribution. Thanks to property 1 and noticing Φ
is an increasing function, one has an upper bound for Fk:

Property 2:

∀k ∈ F, Fk ≤ Ak = Φ

 −(α − β)√
σ2

k + σ2
k−1

 (11)

On Fig. 2 is plotted AAA = (A1, ..., An) for α = 50 and β =
0. Because this signal is a simulation, one exactly knows
the value of ∆mk, which allows to evaluate the admissible
limit values for AAA as follows:

Alim
k = Φ

 −∆mk√
σ2

k + σ2
k−1

 (12)

One notes through AlimAlimAlim = (Alim
1 , ..., Alim

n ) that counter-
variations probabilities are close to zero on high variations
areas. This observation is confirmed by Fig. 3 where the
value of Ak quickly decreases.

D. Focus on local minima
Let introduce ξ, the set of indexes of yyy local minima:

ξ = {k|yk < yk−1, yk < yk+1} (13)

0 1 2 3 4 5
( )/ 2

k + 2
k 1

10 6

10 5

10 4

10 3

10 2

10 1

100

A k

Fig. 3: Ak values on a log scale.

1) Local minima bias: As shown in Fig. 4, the local
minima set is biased because local minima’s expectation
is not equal to the signal expectation. Moreover, the
figure shows that local minima are less dispersed than
the observation. It makes sense because local minima are
less likely to have a value above µ. Let φ(.) denote the
probability density function (PDF) of the standard normal
distribution.

Fig. 4: Local minima’s expectation bias for µ = 100. Black
is associated with the full signal, red is associated with its
local minima. Vertical lines indicate expectations of the
distributions.

Property 3: One has:
E(yξi

) = µξi
+ σξi

C1

C0

V(yξi
) = σ2

ξi

(
C2

C0
−
(

C1

C0

)2
) (14)
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where

Ci =
+∞∫
−∞

uiφ(u)(1 − Φ(u))2du (15)

Note that C0 is the density of ξ for a stationary signal.
Numerical integration results in the following values: C0 = 1/3

C1 ≈ −0.28209479
C2 ≈ 0.42522148

(16)

The reduction of the variance of the local minima that one
noticed on Fig. 4 may now be quantified:

V(yξi
)

σ2
ξi

= C2

C0
−
(

C1

C0

)2
≈ 0.55946721 (17)

Property 3 allows one to propose a bias correction:
Property 4: µ̂ξi is an unbiaised estimator of µξi such

that:  µ̂ξi = yξi − σξi

C1

C0
V(µ̂ξi

) = V(yξi
)

(18)

Proof of properties 3 and 4 is given in the appendix.
2) Occurrence of local minima: One have reported on

the Fig. 5 the evaluation by simulation of the probability
Pmin that a point of a linear signal, with a slope γ and
a gaussian noise with a standard deviation level σ, is a
local minima. Note that Pmin(γ/σ = 0) = C0, and Pmin

quickly decreases.

Fig. 5: Blue points represent Pmin(γ/σ) on a grid of 20
values of γ linearly spaced on [0, 100] and 20 values of
σ spaced evenly on a log scale on [1, 1000]. Black line
represents C0.

Additionally, one can deduct from property 2 an upper
bound on the probability that a local minima belongs to
F:

Property 5:

P (k ∈ F|k ∈ ξ) ≤ Ak

P (k ∈ ξ) (19)

Proof of property 5 is given in the appendix. One notices
that P (k ∈ ξ) can not be too small, because in practice
there is always a non negligible portion of local minima in a
measurement. Moreover, Fig. 5 testifies that ∀k ∈ F, Ak is
dramatically low. Therefore, P (k ∈ F|k ∈ ξ) is majorated
by a constant close to zero, which explains a remarkable
phenomenon easily noticeable through data: local minima
are absent from the flanks. It is thus possible to identify
points in F by observing ξ:

Hypothesis 2:

ξ ⊂ F (20)

Since local minima are easily observable in a given
spectrum, hypothesis 2 is a convenient criterion upon
which one may build an estimator for the continuum.

III. Continuum estimation
A. Intruders filtering

In the previous section, one identified points from F.
However, this is not exactly what one was looking for (we
are looking for ccc where mmm is omitted). Some undesirable
intruders are present in ξ, as shown in Fig. 6. Indeed, it
contains top points which must be removed. Moreover,
local minima may accidentally appear on the flank of
a significant peak. In any case, all intruders values are
substantially higher than those of the points attached to
the continuum. This gives us an opportunity to filter them.
One assumes yξi

is a sample from a random variable Y min
i

such that:
Hypothesis 3:

Y min
i ∼ N (E(yξi

), V(yξi
)) (21)

Note that Hyp. 3 is actually an approximation of the true
distribution of the local minima, but which simplifies the
definition of the process of discontinuity detection.

Let define the null hypothesis H0 :≪ there is no
discontinuity between ξi−1 and ξi ≫. Let tbreak be the
1 − η/2 order quantile of N (0, 1) and:

zi = |∆yξi |√
V(yξi

) + V(yξi−1)
(22)

By Hyp. 3, the variable zi is a z-score for H0. Conse-
quently, if tbreak ≤ zi, one can reject H0 with a confidence
η.

By selecting a threshold tbreak for this hypothesis test-
ing, one detects discontinuities in ξ, and forms groups of
continuous ξ sets. Then one observes the sign of ∆yξi

at
the groups borders. This reveals groups which levels are
higher than those of their direct neighbours. These are
intruders groups to be filtered as shown on Fig. 6.
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Fig. 6: Intruders filtering with tbreak = 1.5. Blue points
represent observations yyy, red crosses represent remaining ξ
after intruders filtering, orange points represent intruders.

B. Large peaks issue
Previous intruders filtering is able to deal with GeHP

thin peaks spectra. But when facing peaks acquired by
a scintillator, peaks are very large with respect to F
variations, and the estimator fails as shown on the top
plot in Fig. 7. A simple solution is to subsample the signal
before filtering the intruders as shown on the middle plot
in Fig. 7. This means that from the relevant spectrum, one
keep one point out of p, starting at point s. Parameter p
is the subsampling step, s the subsampling offset such as
0 ≤ s < p. In this manner, the variation rate between two
points is multiplied by p, whereas the noise level has not
changed, which allows to fix the large peaks issue.

To limit the information loss due to subsampling, one
selections subsamples of ξ successively with all possible
values of s for a given p in order to produce p subsets
of points of the continuum. Then subsets are merged as
illustrated on the bottom plot in Fig. 7.

Actually, when facing large peaks, subsampling is a trick
which allows to fall back on a thin peaks analysis issue.
An optimum choice for p depends on (i) w, the actual full
width at half maximum (FWHM) of the peaks and on
(ii) wopt, a fix ideal FWHM that one strives to retrieve.
This offers a meaningful alternative parametrization for
the estimator:

p = max
(

1, ⌊ w

wopt
⌋
)

(23)

C. Noise filtering and interpolation
In previous developments, one found points ξ in the

signal where peak levels are negligible. However, the con-
tinuum has yet to be dissociated from the observation
noise by a filtering operation. Furthermore, one has to fill

Fig. 7: Subsampling effect on outlier filtering with tbreak =
1.5. Top figure uses no subsamplings, middle figure uses
subsampling (p = 5, s = 0), bottom figure uses merged
subsamplings (p = 5). Blue line represents observations yyy,
red crosses represent remaining ξ after intruders filtering.

missing values at channels which does not present local
minima.

Every filter is built on a regularity prior for the clean
signal that one strives to retrieve. The smoothness of
the continuum suggests it can locally be described by a
polynomial expression. If continuum presents some dis-
continuities which undermines the polynomial assumption,
these are difficult to take into consideration because of our
ignorance of the continuum and one merely assumes this
event is rare and sets it aside.

The proposed filtering process at ξi then consists in
the fit of a polynom of order of on a odd window of wf

contiguous points of ξ centered in ξi. This filter is similar
to a Savitzky-Golay filter [35] but with a nonuniform
sampling step as points of ξ are not evenly spaced. In a
second time, a linear interpolation fills the missing parts
of the signal.

The selection of the appropriate window size and order
achieves a trade-off between noise reduction and avoiding
the introduction of bias. Indeed, the wider the window
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and the lower the order, the more noise is filtered out.
However, the more the noise reduction is, the less the filter
will succeed to follow the continuum variations, and thus
lead to a bias in the result.

In order to visualize this trade-off, let proceed to two
simulations. In the first simulation, one filters the noisy
observation of a constant continuum, in order to isolate the
noise reduction. The variance of the noise was fixed at a
level of 300. Noise reduction is then quantified by the Mean
Square Error (MSE). In the second simulation, one filters a
step signal without noise in order to isolate the bias. This
is the worst-case scenario for the continuum variations.
The step levels were fixed at 0 and 300. Filtering bias is
then quantified by the MSE. The simulations results are
illustrated on Fig. 8. If numeric values are specific to the
simulation parameters, the graph allows to identify the
dynamics of the filter.

Because of our ignorance of the continuum, there is no
optimal set of parameters for the filter. Therefore, one
proposes the following qualitative reasoning. Considering
high continuum variations are rare events, the noise reduc-
tion is our priority selection criterion. The graph shows
of ∈ {2, 3} have the worst noise reduction score, and one
rejects these. Looking at the bias score, one finally chose
to set of = 1. Looking back to the noise reduction, one
notes wf = 11 results in ≈ 85% of noise reduction and
does not improve that much for greater values. Therefore,
one chose to set wf = 11.
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Fig. 8: Evolution of the MSE with the window size for
several orders. Points are resulting from the noise re-
duction simulation. Black line represents the observation
noise level. Crosses are associated to the filtering bias
simulation. Colors are associated to a given value for of

according to the legend. Unobservable blue points are
hidden behind orange points. Unobservable green points
are hidden behind red points.

D. Full continuum estimation procedure
For a given spectrum, the full continuum estimation

procedure is the following: 1) subsampling the signal as in
part III-B; 2) observing local minima defined in (13); 3) fil-
tering intruders as in part III-A; 4) correcting the local
minima bias by property 4; 5) merging remaining points
from each subsamples; 6) filtering noise and interpolating
to extend the signal to all channels as in part III-C. Then
the BR consists in removing the estimated continuum to
the signal in order to isolate the peak mixture covered by
the observation noise.

The procedure depends on w which allows to scale
the effects of the process (23), and on the parameters
tbreak, wopt, wf and of . An illustration of the resulting full
estimation is reported in Fig. 9. One notes that the peak
is essentially extracted, even if slightly underestimated.
A portion of the peak basis is indeed assigned to the
continuum which biases the estimation of the area. This
is inevitably caused by the bordering areas where it is
difficult to assign a point to F or F.

60 40 20 0 20 40 60
k

400

600

800

1000

1200

y

Fig. 9: Continuum estimation. Black line represents ccc. Blue
points represent observations yyy. Red points represent re-
maining ξ after intruders filtering. Orange points represent
intruders. Purple line is the continuum estimation without
noise filtering, with w = 18, tbreak = 1.3 and wopt = 15.
Green line is the full continuum estimation with wf = 11
and of = 1.

Fig. 9 also reports the continuum estimation without the
use of the filter, from which it can be seen that the bias
of the filter attenuates the bias of the estimator. Fig. 10,
generated by Monte Carlo simulations, details this effect
by showing the expected continuum estimate as a function
of the filtering window. It also shows that the continuum
estimate slightly extends beyond the base of the peak.
E. Selection of parameters

The mean width of the peaks w is constant for a
given measurement device, but still needs to be (roughly)
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Fig. 10: Filtering attenuation of the continuum bias. Blue
line represents µµµ, the signal without noise. Other lines are
the expected estimation of the continuum, varying wf ,
with w = 18, tbreak = 1.3 and wopt = 15.

specified in order to adapt the method to the spectrometer.
Filters parameters were fixed in III-C to wf = 11 and
of = 1, and this choice is confirmed by Fig. 10.

Parameters tbreak and wopt allow to define the balance
between peaks and continuum, but are still unspecified. As
the area of the peaks in the spectrum are the measurand
of the spectrometry gamma analysis, the bias on the
estimated area is a relevant metric of the goodness of the
continuum estimation.

A set of grid explorations were performed on Monte
Carlo simulation for several configurations for the esti-
mator and for the spectrum. Each simulation is repeated
500 times. The simulated signal is a Gaussian peak char-
acterized by a FWHM w and a height h added to a
constant continuum c covered by a Poisson noise (the
same configuration as the one of the signal of Fig. 9). The
baseline removal process is then applied to the signal, but
without noise filtering in order to isolate the influence of
tbreak and wopt. The area of the peak is estimated from
the difference of the observation and of the continuum
estimate. The expected bias on the estimated area was
reported on Fig. 11.

It may be seen on Fig. 11a that without subsambling,
only well resolved peaks (with small w) are properly man-
aged by the method. As a consequence, the application
range of the estimator of Tervo is roughly limited to
w < 15. The confrontation of Fig. 11a and Fig. 11b shows
the contribution of the subsampling, which extend the
method to any peak width. Apparent lines of discontinuity
in Fig. 11b are associated with a change in the subsampling
step p.

Fig. 11d shows that tbreak is little sensitive to the choice
for wopt. As a consequence, tbreak and wopt can be chosen

independently.
Fig. 11a and 11c show that tbreak is not sensitive to

the width of the peak, but to the noise level. Indeed,
faced to significant peaks, i.e. clearly distinguishable from
the noise, outlier filtering does not impact that much the
average estimator performance, because it is designed to
deal with rare events. When a local minima appears on
the top of a peak, a too high value of tbreak will prevent to
detect the outliers. However, the acceptable limit value is
high, because variations between points of the continuum
and points of the top of the peak are huge. Conversely, a
too small value of tbreak will exclude a lot of local minima
from the pure continuum. This loss will be amplified by
the continuum variation. As a consequence, one cautiously
chose to set tbreak = 3.

By observing Fig. 11, one is tempted to chose the
smallest admissible value for wopt. However, the simula-
tions does not consider variations in the continuum and
the application to real spectra will not be satisfactory
because large parts of the pure continuum will be excluded
from the estimate. In the absence of any characterization
of the continuum variations, it is mandatory to proceed
to an extensive empirical campaign in order to select
wopt, for which the goodness of the estimate relies on the
visual validation of an expert. The authors figure out that
wopt = 15 is an empirical robust choice.

IV. Real spectra application

Fig. 1 and 12 present real spectra continuum estimations
in order to permit a comparison between the method of
Tervo [27] and the proposed method. One notices that
the estimator of Tervo appears to be a particular case
of the new estimator without filtering, with a different
interpolation method, and with tbreak = +∞ and wopt =
+∞. Undoubtedly, the new estimator shows enhanced
performances and qualitatively meets our expectations in
both applications since almost all significant peaks that
one may visually identify are extracted. To the knowl-
edge of the authors, no relevant quantitative performance
metrics exists for such estimators because continuum are
by essence unknown quantities. All reference metrics are
resulting from a visual quality assessment, which does not
add anything to the examination of the proposed figures.

Fig. 12a shows the efficiency of the new procedure.
The noise reduction is satisfying. The areas [300, 400] and
[4600, 4800] show it conveniently deals with multiplets.
The area [500, 540] presents the largest continuum vari-
ation of the spectrum, and the new method is slightly
biased. It is attributed to the noise filter, because Tervo’s
estimation is not biased. Tervo’s estimator gives large
bias in areas [4300, 4400], [4600, 4800] and [6200, 6600],
which does not happen to the new procedure. Little peaks
[2100, 2250], [3400, 3500], [3900, 4000] and [5300, 5500] are
correctly separated from the continuum by the new pro-
cedure, which is not the case with Tervo’s estimation.
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(a) Omission of subsampling (h = 1000, p = 1).
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(b) Contribution of the subsampling (h = 1000, tbreak = 1.5).
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(c) Influence of the noise level on tbreak (w = 18, p = 1).
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(d) Influence of tbreak (h = 1000, w = 80).

Fig. 11: The expected bias on the estimated area for several configuration of the continuum estimator. The continuum
level is fixed to c = 300. Filtering parameters are fixed to wf = 11 and of = 1. The shade of colours indicates the
relative values of the bias.

Fig. 12b shows the adaptability and the robustness
of the new procedure, were Tervo’s method fails. The
proximity of peaks an continuum variations in the area
[600, 900] suggests the estimate can be unstable in this
area. However, the estimate seems to be satisfying, which
shows the robustness of the continuum estimate to contin-
uum variations. The new estimator fails in area [300, 400]
because of the conjugated effect of the noise filtering and of
the continuum discontinuity. It is not convincingly dealing
with the multiplet in the area [3400, 3800] because the
peaks ratio of height to width is too low. Elsewhere, peaks
were conveniently removed from the continuum estimate.

V. Conclusion
This paper deducts the properties of local minima under

an original aspect, i.e. counter variations, and proposes a
totally new estimation procedure, for which the key parts
are intruders filtering and subsampling. The present work
stands as an improvement of the method of Tervo et al.
[27], which is limited by the FWHM of the measurement
spectra, does not handle the apparition of local minima
on top of peaks, does not filter the noise and relies on
over-sophisticated interpolation process.

A full optimization procedure of the parameters, and a
study of the robustness of the method would be appreci-
ated. However, in the absence of a more accurate descrip-
tion for the continuum, this appears to be unreachable.
Nevertheless, the proposed empirical adjustment should fit
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Fig. 12: Zoom on the continuum estimation of spectra of Fig. 1. The plot uses a linear scale. Blue lines represent the
observation. Orange lines represent the reference estimates of Tervo’s method. Black lines represent the new method
results, applied with parameters tbreak = 3, wopt = 15, wf = 11, of = 1 and w = 6 for HPGe, w = 80 for scintillator.

for a general purpose, and the authors are of the opinion
that little performances improvement is to be expected in
this direction. Naturally, this method presents some limits
when continuum variations are close to peaks variations.

As a conclusion, this method allows a quick, robust,
adaptive and automated baseline removal for gamma spec-
trum. It can be used as a preprocessing operation to the
peak mixture analysis.

Appendix

Proof of properties 3 and 4: Let consider a stationary
signal of three channels simulated with X1, X2, X3 ∼
N (µ, σ2). Let fXi

(.) denote their PDF and g(x) = x − µ

σ
.

Consequently:{
fX(x) = g′(x)φ(g(x))

P (Xi ≤ x) = Φ(g(x)) (24)

One is looking for f , the conditional PDF of X2 when
it turned out to be a local minima:

f(x) =fX2|X2<X1,X2<X3(x) (25)
∝fX2(x)P (x < X1)P (x < X3) (26)
∝fX2(x)(1 − P (X1 < x))2 (27)
∝g′(x)φ(g(x))(1 − Φ(g(x)))2 (28)

Let assess the normalization constant:
+∞∫
−∞

g′(t)φ(g(t))(1 − Φ(g(t)))2dt =
+∞∫
−∞

φ(u)(1 − Φ(u))2du

(29)
= C0 (30)

Thus f(x) = 1
C0

g′(x)φ(g(x))(1 − Φ(g(x)))2. Let Z

a random variable with f as PDF. Involving variable
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mutation:

E(Z) =
+∞∫
−∞

tf(t)dt =
+∞∫
−∞

(σg(t) + µ)f(t)dt = σ
C1

C0
+ µ

(31)

⇔E
(

Z − σ
C1

C0

)
= µ (32)

which endorses the proposed estimator. Then:

E(Z)2 =
(

σ
C1

C0
+ µ

)2
(33)

=
(

σ
C1

C0

)2
+ 2σµ

C1

C0
+ µ2 (34)

Moreover:

E(Z2) =
+∞∫
−∞

t2f(t)dt =
+∞∫
−∞

(σg(t) + µ)2f(t)dt (35)

=
+∞∫
−∞

(σ2g(t)2 + 2σµg(t) + µ2)f(t)dt (36)

=σ2 C2

C0
+ 2σµ

C1

C0
+ µ2 (37)

Let derive the variance of this estimator:

V
(

Z − σ
C1

C0

)
= V(Z) = E(Z2) − E(Z)2 (38)

= σ2

(
C2
C0 −

(
C1
C0

)2
)

(39)

Proof of property 5: One has

P (k ∈ F) = P (k ∈ F+) + P (k ∈ F−) (40)

Furthermore:

P (k ∈ ξ|k ∈ F+) = P (∆Yk < 0, ∆Yk+1 > 0|α ≤ ∆mk)
(41)

≤ P (∆Yk < 0|α ≤ ∆mk) = Fk ≤ Ak

(42)

In the same way, one finds P (k ∈ ξ|k ∈ F−) ≤ Ak.
Therefore:

P (k ∈ ξ|k ∈ F) = P (k ∈ ξ|k ∈ F+)P (k ∈ F+)
P (k ∈ F) (43)

+ P (k ∈ ξ|k ∈ F−)P (k ∈ F−)
P (k ∈ F) (44)

≤ Ak

P (k ∈ F) (P (k ∈ F+) + P (k ∈ F−))

(45)
= Ak (46)

Finally:

P (k ∈ F|k ∈ ξ) = P (k ∈ ξ|k ∈ F)P (k ∈ F)
P (k ∈ ξ) (47)

≤ Ak

P (k ∈ ξ) (48)
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