
Approach to the Design of a Microservice

Architecture Based on Praxeme

Abstract— Frequent updates of business needs are one of the

factors of the evolution of a company. These permanent changes

require a large flexibility of the Information System (IS). SOA

(Service Oriented Architecture) is an architecture that offers

more scalability to an application by subdividing the monolithic

block into independent services. Nevertheless, it is not

sufficiently suitable in terms of accessibility of services and data.

It is thus necessary to orient the design of the IS towards a new

architecture called Microservice Architecture (MSA). The

objective of this paper is to recommend a methodology to design

MSA. Indeed, our approach is based on Praxeme which is an

enterprise methodology appropriate to SOA. The result

obtained from the approach proposed in this paper is a model

allowing to automate the MSA design.

Keywords—SOA, MSA, MDA, UML, Monolithic Architecture,

software architecture design methodology, Praxeme, ReLEL

I. INTRODUCTION

Lately, organizations are facing a challenge of updates.
The inability to govern the frequent changes in needs
attributes to negative effects to the business. Current
technologies are also evolving very fast and some are
providing better qualities. Thus, the company must be able to
adapt to new features and developments proposed. However,
the update mechanism is long and complicated with a
traditional application because the whole must be scaled. This
structure is called "Monolithic Architecture"[1]. It is a less
scalable method because the more the IS extends, the more
interdependence occurs within the application. Furthermore,
the adoption of cloud computing is sucking in researchers as
well as practitioners lately [2]. Therefore, the design and
implementation of an IS requires a new and more practical
approach.

This is how the Service Oriented Architecture or SOA
appeared in the early 2000s. It is an approach to software
design and development that ensures the independence
between the different software artifacts [3]. Its objective is to
offer a flexible application by subdividing it into several
independent services. SOA has specificities that are the
interoperability of several applications or services, reusability
and modularization [4]. However, it has limitations in terms
of the communication bias of the Enterprise Services Bus
(ESB) and the monolithism of its database. In other words, the
deployment of all services must be reviewed if one of them is

blocked. Moreover, the services in the bus may be inaccessible
in case of ESB failure while an infrastructure such as ESB is
obligatory in SOA [5]. (Oberhauser, R., and al., 2017) [6] also
argued that SOA is a heavyweight architecture.

Then, a more advanced version of SOA called
Microservice Architecture (MSA) came along. (Rademacher,
F., and al., 2017) [7] claim that MSA is lighter and less
complex than SOA due to its reduced service terminology.
Each microservice operates in its own process. According to
the article [8], microservices are described as independently
developed and deployable elements.

This paper aims at proposing an approach for the
automatic design of MSA. An analysis on enterprise
methodologies has shown the adaptation of the Praxeme
enterprise architecture methodology with SOA. In other
terms, Praxeme is an enterprise methodology that adopts
model-driven architecture (MDA) and SOA to organize all
aspects of the enterprise [9]. Since MSA inherits the SOA
principle of orienting the application into autonomous
services, our approach thus relies on Praxeme for the design
of MSA. We suggest an approach hypothesis based on model
transformation rules. As a result, we were able to obtain a
model that represents a speculation for the automatic design
of MSA.

This paper is subdivided as follows, section II elaborates a
study on the concepts of MSA and SOA as well as the
comparison between the two architectures. Then, an analysis
on the works of enterprise architecture methodologies is
elucidated in section III. Subsequently, our proposed approach
is presented in section IV which describes the Praxeme
framework and illustrates a hypothesis on the design of MSA.
Finally, Section V concludes the paper and discusses future
work.

II. OVERVIEW OF SERVICE ORIENTED ARCHITECTURE AND

MICROSERVICE ARCHITECTURE

A. Service Oriented Architecture (SOA)

In the past, software development was based on a
monolithic architecture where the entire application was
unified in a single code base. In fact, the maintenance and
extension of the IS becomes very complex because its

Mihajasoa Léa Fanomezana
Laboratory for Mathematical and Computer Applied

to the Development Systems (LIMAD)

 University of Fianarantsoa, Madagascar

 fmihajasoalea@gmail.com

Andrianjaka Miary Rapatsalahy

Laboratory for Mathematical and Computer Applied

to the Development Systems (LIMAD)

University of Fianarantsoa, Madagascar

andrianjaka92@yahoo.fr

Nicolas Raft Razafindrakoto

Laboratory of Multidisciplinary Applied Research

(LRAM)

University of Antananarivo, Madagascar

 rnraft@gmail.com

Costin Bădică

Faculty of Automation, Computers and Electronics

(ACE)

University of Craiova, Romania

costin.badica@edu.ucv.ro

25

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 2, NO. 2, DECEMBER 2022, pp. 25-31

Cite as: M. L. Fanomezana, A. M. Rapatsalahy, N. R. Razafindrakoto, and C. Bădică, “Approach to the Design of a Microservice Architecture Based on

Praxeme”, Syst. Theor. Control Comput. J., vol. 2, no. 2, pp. 25–31, Dec. 2022.

DOI: 10.52846/stccj.2022.2.2.40

functionalities and components are interconnected and
interdependent, hence the intervention of the SOA.

The Service Oriented Architecture or SOA is a structure
that consists of facilitating the design and development of an
IS by dividing it into several basic elements called "services".
It is an approach that makes the application more flexible and
more agile in the face of changing needs. It promotes
modularization, reusability and autonomy of services with a
system of weak coupling [10]. SOA also provides the cloud as
an environment for development and deployment of the
system

In addition, SOA provides a means that simplifies the
communication between services and promotes the
interoperability of multiple applications or services. To do
this, services are provided and published by providers with a
standardized style description in service registries that
consumers can access and use. Thus, SOA consists of three
actors, namely the main actors that are the service provider
and the service consumers and the agencies that allow
consumers to find services (Figure 1) [11].

The notion of the ESB or Enterprise Services Bus has been
introduced into SOA. It is an IT tool that handles the
communication between services and takes care of the
messages and their transformations.

The main standards for web services in SOA are SOAP,
WSDL, and UDDI [12]

• SOAP (Simple Object Access Protocol) describes a
communication process between web services.

• WSDL (Web Services Description Language) is an
XML language that describes the web service

• UDDI (Universal Description, Discovery, and
Integration) is an element that is used to locate the web
service sought on the network

Fig. 1. Conceptual model of an SOA architectural style [11]

B. Microservice Architecture (MSA)

Microservice Architecture or MSA is an architectural style
of designing and implementing an IS. MSA inherits the
concept of SOA, which consists in dividing a system into
smaller particles. These particles are called "Microservices".

This paper is based on two main motivations for choosing
MSA over SOA.

- At the communication level, SOA has the ESB bus which
seems to be heavy and very critical in case of failure

- The SOA database is still monolithic where all services
have a common database

Indeed, MSA is a modern approach to develop an IS by
breaking it down into reduced services that each have their
own processes and communicate via lightweight mechanisms
such as HTTP and REST API. (Fowler,M. and al., 2014) [13]
defines MSA as a set of reduced services that are realized and
deployed separately (figure 2). This architecture prioritizes
software flexibility as well as service quality and security
through the independence of services, testing and deployment
of microservices. (Cojocaru, M. D., and al., 2019) [14]
confirm that research and business sectors have recently
become interested in MSA because of its various advantages.
For example, powerful and modern platforms such as Netflix,
Amazon and SoundCloud have turned to this famous
approach [15]

C. Comparison Between SOA and MSA

Recently, the research and industry field became aware of
the complexity of maintaining monolithic applications and
focused on SOA for IS flexibility. Then a newer and more
refined version of SOA named "microservice" was becoming
very apparent from the year 2014 [13]. Both architectures are
based on services as building blocks for better application
design and development. In other terms, the concept is defined
by splitting the monolithic system into several autonomous
services. Indeed, the services can be developed by different
programming methodologies. On the other hand, MSA has
smaller services compared to SOA [16]. And in terms of
communication and protocols, MSA often proposes lighter
mechanisms such as REST API while SOA generally uses
standard protocols such as SOAP and ESB as a tool for
exchange between services. The most obvious difference
between MSA and SOA is in the database and the granularity
of the services. Services in SOA have only one data store,
whereas in MSA each microservice has its own database. In
summary, (Fanomezana, M. L., and al., 2022) [2] illustrated
Table I for a visibility of the distinction of the two
architectures.

Fig. 2. Microservices Architecture

26

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 2, NO. 2, DECEMBER 2022, pp. 25-31

TABLE I. COMPARATIVE ANALYSIS OF MSA AND SOA [2]

 SOA (Service Oriented Architecture) MSA (Microservice Architecture)

Definition [17] Software architecture for the design and

implementation of an IS based on the

decomposition of the application into several

independent services

Software architecture for the design and

implementation of an IS based on the

decomposition of the application into several

autonomous microservices

Objective [17] Overcome the problem of interdependence and

make the IS more flexible to changing needs

Overcome the problem of interdependence and

make the IS more flexible to changing needs

Sharing of resources

between departments

Promotes the sharing of resources as much as

possible [15]

Ensures departmental autonomy by sharing

fewer resources [15]

Remote access

protocols

Uses SOAP as standard protocol for remote

access [12]

Uses lightweight protocols such as REST [17],

[18]

Communication The communication mechanism between

services is done through the ESB

The communication mechanism between

services is done through the API

Granularity Services can be varied from fine-grained to

large-grained services[7]

Service on a small scale [17]

Scope or coverage Has an enterprise scope that quite often

contains a set of application services, which are

also constituted by several infrastructure

services [15], [17]

Has an application scope where each

microservice corresponds to a small application

with its own hexagonal architecture [17]

Governance Provides governance protocols common to all

departments [19]

Provides decentralized governance [20]

Reusability Promotes service reusability in an integrated

service infrastructure [19]

Prefer to rebuild the code than to reuse it [16]

Data storage [16] All services share the same data storage Each microservice manages its own database

Interoperability [17] Each service can operate on different

technologies

Each service can operate on different

technologies

Cloud-based yes yes

III. STATE OF THE ART ON ENTERPRISE ARCHITECTURE

FRAMEWORKS

Enterprise architecture is an approach that allows
organizations to have a global vision of all its aspects and their
relationships. It is a way to make the business areas, the
automation aspects and the technological aspect collaborate to
simplify the management of the IS. Otherwise stated, the role
of this method is to ensure the alignment of IT sides, strategies
and current business standards and also to design and develop
required IS [2], [21]. However, enterprise architecture is
usually applied with a methodological framework to facilitate
its application at the organizational level. Indeed, among the
existing methodological frameworks we will study the
Zachman framework, the Open Group Architecture
Framework (TOGAF), the Federal Enterprise Architecture
Framework (FEAF) and the Praxeme methodology.

First, the Zachman framework was initiated by an
American business and computer consultant named John A.
Zachman in 1987 [22] then revised and extended in 1993 and
1999 [23].It is an enterprise methodological framework that
classifies and structures descriptive representations of an
enterprise in different dimensions. Its objective is to describe
IS artifacts and ensure the implementation of standards for
creating the information environment in an adequate way [24].

The article [24] mentioned that the implementation of
enterprise architecture is not an easy task to perform. There
are several challenges. Thus, the authors proposed an
approach to facilitate the development of an enterprise
architecture based on the business and technical perspectives
of the Zachman framework. Next, an enterprise integration

methodology using the Zachman framework was suggested
after finding that enterprise integration increases an
organization's enterprise architecture skills [25]. (Alwadain,
A. S. A., and al., 2010) focused on the basic principle of the
Zachman framework and analyzed various attempts to
improve it to fit SOA and services. Their analysis led them to
conclude that there is a lack of agreement on the SOA
positions in the Zachman framework [21]. The paper [26] also
aimed to present different models of SOA architecture and to
demonstrate the place of SOA in the framework. In other
words, the authors tried to introduce SOA into the Zachman
framework. An approach to modeling SOA in the enterprise
architecture framework was also discussed in the paper [27].
This discussion consists of extending the Zachman framework
and allowing it to include service oriented artifacts exploiting
notions of business and software service orientation within the
enterprise.

From the studies of the Zachman framework, we see that
it is a very popular and widely used methodology.
(Benkamoun and al., 2014) similarly confirm this in his paper
[28]. On the other hand, we do not see satisfactory and
accurate results about the introduction of the SOA paradigm
in the Zachman framework. The perspective of the paper [21]
is based on an analysis that takes into account more current
enterprise architecture frameworks like TOGAF. This means
that it is a less modern Zachman framework compared to other
architecture frameworks.

As for the TOGAF methodology, The Open Group
Architecture Framework or TOGAF was proposed by The
Open Group in 1990 as a strategy for the development of
architecture in the context of enterprise architecture. TOGAF

27

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 2, NO. 2, DECEMBER 2022, pp. 25-31

1.0 is initially presented in reference to the technical
architecture for information management at the US
Department of Defense [29]. The version 8 of TOGAF was
projected in 2004. Then the last version which is TOGAF 9
was launched in 2009 [2]. It consists of a framework called the
Architecture Development Method (ADM). It is a large part
of TOGAF that indicates how an enterprise architecture can
meet specific business needs [30]. TOGAF is an enterprise
architecture framework that has the objective of designing,
planning and organizing the infrastructure of the IT system
[31]. (Sofyana, L., and al., 2019) generated enterprise
architecture planning in a college that has a vision and mission
considering the development of IT technologies with TOGAF
[30]. The latter showed that the approach led to an effective
outcome. TOGAF was also exploited by [32] to design an
architecture in a large-scale SOA-based research project. The
paper concluded that combining the TOGAF framework with
SOA increases the effectiveness of SOA such as reusability
and flexibility of the enterprise IS. However, [32] produced
more results at the research phase than in the domain of an
enterprise. Then, a modeling approach aligned with BPM and
SOA based on the TOGAF architecture framework was
proposed by [33] to obtain a more agile architecture. On the
other hand, the researchers in the paper [34] combined the
TOGAF and SOA framework for service innovation in the
general government office in Indonesia due to a problem of
updating the integration process which is limited. The results
showed that TOGAF will be the guide for the system's
integrated business process with SOA as the technical
approach.

TOGAF has advantages such as its good alignment
between business and technology, its popularity and the
existence of clear and detailed steps for building a business
process and IS architecture [30], [33]. Nevertheless, The Open
Group found the lack of SOA development support in TOGAF
9 and decided to make a consideration to fill this gap but
TOGAF 9 does not yet include the results [35]. In addition,
TOGAF also has limitations in terms of the lack of
information on the maintenance of the framework, the lack of
integration between the different proposed artifacts, and the
exclusion of strategic aspects [2].

FEAF or Federal Enterprise Architecture Framework is
one of the frameworks studied in this paper. The FEAF was
developed by the US federal government to unite its agencies
and functions under a common enterprise architecture. Its
version 2 was released in May 2012 as part of an improvement
in the deployment of IT services [36]. The Federal Enterprise
Architecture (FEA) is built through a collection of reference
models namely PRM, BRM, DRM, SRM, TRM [37]. This
framework consists of defining the planning of the enterprise
architecture and has the vision of simplifying and
implementing common processes and information across
federal agencies. The description of an enterprise architecture
requires a methodological framework. This led (Mahdavifar
and al., 2012) to propose a method for integrating concepts
from the FEA framework and its Business Reference Model
(BRM) and an International Software Testing Qualification
Board (ISTQB) framework for the enterprise architecture
testing process [37]. Then, (Defriani & Resmi, 2019) used
FEAF for e-government architecture planning in Purwakarta
districts in Indonesia. The study is to improve the quality of
services in governance and resulted in an e-government
architecture as well as a plan for the implementation of the e-
government application in the concerned districts [36]. In

2021, the Regional Government Organization of Mataram
City created integrated services through the implementation of
the e-government system by focusing solely on simplifying
the service process. The paper [38] used the Enterprise
Architecture Planning (EAP) method for planning a roadmap
to ensure integration and interoperability with other electronic
systems. Both are then enhanced by the FEAF framework and
the SOA software architecture.

FEAF has been found to have its strength in being able to
describe and plan the enterprise architecture in a detailed and
simplified manner. However, papers that exploit the
combination of the FEA framework and SOA are very rare.

However, (Thierry and al., 2013) [39] found that these
Enterprise Architecture frameworks of American origins are
often inadequate, too heavy to design and less coherent.

- The Zachman framework shows its complexity through
the 30 different aspects of the Enterprise

- The TOGAF framework does not take into account
models and their transformation.

The article [39] has thus proposed an emergent approach
which is Praxeme. The authors have demonstrated from an
experimentation the reliability and the adequacy of Praxeme
especially at the level of the transformation of the models and
the design of the modeling until the operational stage.

Nevertheless, works such as [40], [9], [41] have noticed
the absence of the model representing the intentional and
semantic aspect of the company in Praxeme. Indeed,
(Razafindramintsa and al., 2016) [41] presented a method that
automatically derives the semantic aspect of Praxeme using
the natural language model. The approach consists of
transforming the eLEL (elaborate Lexicon extended language)
requirement model into a business model at the Praxeme
methodology level. (Rapatsalahy and Al., 2020, 2021) [9],
[40], [42] extended the eLEL requirement model into ReLEL
(Restructuring extended Lexical elaborate Language) and
initialized it in Praxeme for automatic generation of the logical
aspect of Praxeme as well as web services and then software
components that represent the software aspect of Praxeme.

Praxeme takes the basic concepts of the methods of the last
thirty years, i.e. the Zachman framework, Merise and other
design methods and updates them. The articles [39] confirms
that this methodology is open source and has more
documentation. Indeed, Praxeme is a framework that appears
to be one of the most recent, modern and advanced
methodologies that have succeeded. Moreover, (Rapatsalahy
and al., 2021) [9] states that it is an approach that takes into
consideration the combination of SOA and MDA for the
design and development of IS. However, (Fanomezana, M. L.,
2022) confirm that Praxeme does not consist of a model for
describing the intentional aspect of the enterprise [2]

IV. PROPOSED APPROACH

In this paper, we suggest an approach for the automatic
generation of MSAs based on the Praxeme methodology. To
do so, we will study the basic concept of Praxeme and develop
a model that allows us to present our hypothesis of approach
for the design of MSA. The MSA architecture is mainly
composed of an orchestration container in which the
microservice container is located. This container is in turn
composed of microservices that each have their own database.

28

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 2, NO. 2, DECEMBER 2022, pp. 25-31

A. Concept of the Praxeme

Praxeme is an enterprise architecture methodology that
covers all aspects of the organization's systems from strategy
to deployment. It is a methodology of French origin coming
from the words "praxis" (action) and "semeion" (meaning)
which means "the meaning of action". It was mentioned in part
"overview of the Service Oriented Architecture" which is in
section II.A that SOA makes the design and development of
an IS easier and ensures the flexibility of the application in the
face of constant updates of the business needs. Thus, the
design of SOA requires an adequate enterprise architecture
methodological framework. Moreover, the Praxeme
methodology suggests the best condition to be adapted to SOA
in order to better take advantage of the privileges of SOA [42].
Praxeme also suggests UML as a modeling language for each
aspect of the enterprise, MDA as an approach to automate the
transition from one aspect to another, and SOA to manage
changes in business requirements [2].

The Praxeme methodology proposes a framework for
representing the reality of the enterprise that is composed of
seven aspects (Figure 3). The design of SOA services is
carried out at the level of the logical aspect, which is one of
these aspects that elaborate Praxeme. In other words, Praxeme
enables the IS to be organized by breaking it down into several
components called "logical services". These represent the
logical aspect of Praxeme, which is illustrated in Figure 4. The
approach is based on the use of MDA with which rules are
proposed to automatically derive SOA logical services from
semantic or pragmatic models [42]

Figure 4 shows the logical aspect of Praxeme containing
the logical factory which in turn is the logical machine in
which the services are located. An automatic generation of
SOA web services has already been realized by (Rapatsalahy
and Al, 2021) [42]. The authors of the paper used the MDA
approach to model the WSDL document from the Praxeme
logic factory via derivation rules. The WSDL model is then
translated into an XML file that describes the SOA web
service [2]. However, (Fanomezana, M. L., and al., 2022) [2]
asserts that the fragmentation of the logical workshop during

logical modeling using Praxeme and SOA is very time
consuming. It is the reason that we propose to automatically
design MSA from the logical workshops of the Praxeme
logical model.

According to the article [2], the idea of the term
"Microservice" consists in fragmenting the application into
the smallest possible entities. The idea of the article [2] lies in
the exploitation of the logical machine which is the smallest
component of the Praxeme logical model to design
microservices. Indeed, the MSA components are modeled
from the constituents of the logical aspect of Praxem.
Therefore, the modeling of the orchestration container, the
microservices container, the microservices is respectively
accomplished from the logical factory, the logical workshop
and the logical machine. In addition, [2] also proposes that the
"data structure" component in the logical machine that is
designed from the attributes of the semantic model models the
database of each microservice.

B. Elaboration of the Model for the Design of the MSA

As our method is based on Praxeme, we rely on the MDA
approach for model transformation in order to assemble the
Praxeme aspects. Unlike the code-centric approach, design
patterns do not change over time. MDA is thus an approach
that is centered on models for the realization of IS. It is based
on the notion of models, meta-models and model
transformation [43].

The principle of MDA is based on four main elements
which are the requirement model CIM or computation
independent model, then the analysis and design model PIM
or platform independent model, the code model at the software
development phase PSM or platform specific model for the
implementation of the system and finally the code (Figure 5)
[44].

The transformation of the models can be divided into two
categories

- M2M (Model to Model) transformation is the change
from models to models

- M2T (Model to Text) transformation is the
transformation of a model to the generation of a code or a file

For this purpose, we need to define a source model and a
target model. Knowing that Praxeme does not have a model
that represents its intentional aspect, we propose the
requirement model ReLEL or Restructuring extended Lexical
elaborate Language to describe this aspect. ReLEL will thus
be considered as a source model while the model
corresponding to each MSA component will be the target
model.

The approach of our hypothesis is globalized in the steps
shown in Figure 6. First, the semantic aspect is derived from
the ReLEL requirement model which describes the intentional
aspect of Praxeme. This step is followed by a modeling of the
semantic aspect of Praxeme which is presented by UML
diagrams. Then, the next phase consists in transforming the
semantic model into a logical model via the M2M mechanism

Fig. 5. The models involved in the MDA approach

Fig. 3. The topology of the enterprise system

Fig. 4. Metaphorical terminology applied to the logical aspect

29

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 2, NO. 2, DECEMBER 2022, pp. 25-31

of MDA. After that, the logical model obtained is transformed
into an MSA component model by the same transformation
mechanism. Finally, the microservices components are
automatically generated from the MSA component model via
the M2T concept.

The ReLEL model, the semantic model, the logical model
and the MSA component model each have their own
metamodel descriptions.

We have thus developed the following transformation
rules describing the passage from one component to another

Rule 1 : The ReLEL requirement model is transformed
into a semantic model

Rule 2 : The semantic model is transformed into a logical
model.

Rule 3 : The logical factory model is transformed into a
container orchestration model.

Rule 4 : The shop logic model is transformed into a
container model

Rule 5 : The machine logic model is transformed into a
microservice model.

Rule 6 : The data structure model is transformed into a
database model.

Rule 7 : The container orchestration model is transformed
into a container orchestration.

Rule 8 : The container microservice model is transformed
into a container microservice

Rule 9 : The microservice model is transformed into a
microservice.

Rule 10 : The database model is transformed into a
database

We have therefore produced a final model that illustrates
our hypothesis for the automatic generation of MSA
components from the Praxeme methodology. We have as a
source element of the approach the semantic model of
Praxeme which represents its semantic aspect. Then, we
obtained the MSA components as a result via derivation rules.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented an approach to manage
the complexities of the organization in the face of changing
needs and technologies. SOA has been proposed to make an
application agile and flexible by fragmenting it into
autonomous services. Due to its limitations in terms of service
and data accessibility, this paper suggests MSA as a more
modern software architecture. It is an approach based on
microservices that each have their own development and
deployment processes [13]. Indeed, the objective of this paper
is to suggest a methodology that automates the design of
MSA. Therefore, the employment of an architecture
framework appropriate to SOA for designing MSA is evident
due to the similarity of the two software architectures in terms
of the basic concept named service [2].

This paper is the extension of the article which concluded
that Praxeme is the very well adapted enterprise architecture
framework for the design of MSA [2].

The approach we adopt is thus the Praxeme methodology.
We propose an elaborated process relying on its aspects. To
do so, transformation rules have been elaborated to facilitate
the passage from the semantic aspect of Praxeme to its logistic
aspect. Our approach is composed of different steps, namely
the derivation of the semantic aspect from the ReLEL
requirement model which describes the intentional aspect of
Praxeme, then the modeling of the semantic aspect of Praxeme
followed by the transformation of the semantic model into the
logical model, the design of the MSA component model from
the logical model and finally the generation of the
microservices components from the MSA component model.
As a result, we obtained a model that represents the hypothesis
on the automatic design of the MSA architecture.

The model we obtained shows the potency of our Praxeme
approach that takes into account the design of the MSA up to
the level of the data structure. Our hypothesis is also more
coherent because all the constituents of the Praxeme logic
model describe respectively the MSA components to be
designed. In the future work, we plan to deepen the study on
the MSA especially on its components to be generated and to
experiment the suggested methodology.

REFERENCES

[1] F. Ponce, G. Márquez, and H. Astudillo, “Migrating from monolithic

architecture to microservices: A Rapid Review”, in 2019 38th

International Conference of the Chilean Computer Science Society

(SCCC), 2019, pp. 1–7.
[2] M. L. Fanomezana, A. M. Rapatsalahy, N. R. Razafindrakoto, and

C. Bădică, “Proposed Methodology for Designing a Microservice

Architecture”, in 2022 23rd International Carpathian Control
Conference (ICCC), 2022, pp. 303–308.

[3] T. Zhang, S. Ying, S. Cao, and X. Jia, “A modeling framework for

service-oriented architecture”, in 2006 Sixth International
Conference on Quality Software (QSIC’06), 2006, pp. 219–226.

[4] C. F. Fang and L. C. Sing, “Collaborative learning using service-

oriented architecture: A framework design”, Knowledge-Based
Systems, vol. 22, no. 4, pp. 271–274, 2009.

[5] R. Berbner, T. Grollius, N. Repp, O. Heckmann, E. Ortner, and R.

Steinmetz, “An approach for the management of service-oriented

Fig. 6. Model of automating the generation of MSA components based on

Praxeme

30

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 2, NO. 2, DECEMBER 2022, pp. 25-31

architecture (soa) based application systems”, Enterprise modelling
and information systems architectures, 2005.

[6] R. Oberhauser and S. Stigler, “Microflows: enabling agile business

process modeling to orchestrate semantically-annotated
microservices”, in Seventh International Symposium on Business

Modeling and Software Design (BMSD 2017), Volume 1, 2017, pp.

19–28.
[7] F. Rademacher, S. Sachweh, and A. Zündorf, “Differences between

model-driven development of service-oriented and microservice

architecture”, in 2017 IEEE International Conference on Software
Architecture Workshops (ICSAW), 2017, pp. 38–45.

[8] M. Grambow, L. Meusel, E. Wittern, and D. Bermbach,

“Benchmarking microservice performance: a pattern-based
approach”, in Proceedings of the 35th Annual ACM Symposium on

Applied Computing, New York, NY, USA: Association for

Computing Machinery, 2020, pp. 232–241. Accessed: Jan. 09, 2022.
[Online]. Available: https://doi.org/10.1145/3341105.3373875

[9] R. M. Andrianjaka, H. Razafimahatratra, M. Ilie, T. Mahatody, S.

Ilie, and N. R. Razafindrakoto, “Derivation of Logical Aspects in
Praxeme from ReLEL Models.”, in ENASE, 2021, pp. 413–420.

[10] M. Kasparick and al., “OR. NET: a service-oriented architecture for

safe and dynamic medical device interoperability”, Biomedical
Engineering/Biomedizinische Technik, vol. 63, no. 1, pp. 11–30,

2018.

[11] M. Mohammadi and M. Mukhtar, “A review of SOA modeling
approaches for enterprise information systems”, Procedia

Technology, vol. 11, pp. 794–800, 2013.
[12] M. K. Haki and M. W. Forte, “Service oriented enterprise

architecture framework”, in 2010 6th World Congress on Services,

2010, pp. 391–398.
[13] M. Fowler and J. Lewis, “Microservices, 2014”, URL:

http://martinfowler. com/articles/microservices. html, vol. 1, no. 1,

pp. 1–1, 2014.
[14] M.-D. Cojocaru, A. Uta, and A.-M. Oprescu, “Attributes assessing

the quality of microservices automatically decomposed from

monolithic applications”, in 2019 18th International Symposium on
Parallel and Distributed Computing (ISPDC), 2019, pp. 84–93.

[15] H. Bloch and al., “A microservice-based architecture approach for

the automation of modular process plants”, in 2017 22nd IEEE
international conference on emerging technologies and factory

automation (ETFA), 2017, pp. 1–8.

[16] J. A. Bigheti, M. M. Fernandes, and E. P. Godoy, “Control as a

service: a microservice approach to Industry 4.0”, in 2019 II

Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.

0&IoT), 2019, pp. 438–443.
[17] A. Andriyanto, R. Doss, and P. Yustianto, “Adopting SOA and

Microservices for Inter-enterprise Architecture in SME

Communities”, in 2019 International Conference on Electrical,
Electronics and Information Engineering (ICEEIE), Oct. 2019, vol.

6, pp. 282–287. doi: 10.1109/ICEEIE47180.2019.8981437.

[18] G. Buchgeher, R. Ramler, H. Stummer, and H. Kaufmann,
“Adopting Microservices for Industrial Control Systems: A Five

Step Migration Path”, in 2021 26th IEEE International Conference

on Emerging Technologies and Factory Automation (ETFA), Sep.
2021, pp. 1–8. doi: 10.1109/ETFA45728.2021.9613622.

[19] M. K. Haki and M. Wentl, “Service-oriented business-it alignment:

a SOA governance model”, 2010.
[20] P. Di Francesco, P. Lago, and I. Malavolta, “Architecting with

microservices: A systematic mapping study”, Journal of Systems and

Software, vol. 150, pp. 77–97, 2019.
[21] A. S. A. Alwadain, A. Korthaus, E. Fielt, and M. Rosemann,

“Integrating SOA into an enterprise architecture-a comparative

analysis of alternative approaches”, in Proceedings of the 4th
International Conference on Research and Practical Issues of

Enterprise Information Systems, 2010, pp. 1–15.

[22] J. A. Zachman, “A framework for information systems architecture”,
IBM Systems Journal, vol. 26, no. 3, pp. 276–292, 1987, doi:

10.1147/sj.263.0276.

[23] T. Iyamu, “Implementation of the enterprise architecture through the
Zachman Framework”, Journal of Systems and Information

Technology, 2018.

[24] C. M. Pereira and P. Sousa, “A method to define an Enterprise
Architecture using the Zachman Framework”, in Proceedings of the

2004 ACM symposium on Applied computing, 2004, pp. 1366–1371.

[25] J. Espadas, D. Romero, D. Concha, and A. Molina, “Using the
zachman framework to achieve enterprise integration based-on

business process driven modelling”, in OTM Confederated
International Conferences" On the Move to Meaningful Internet

Systems", 2008, pp. 283–293.

[26] V. Barekat, E. B. Nejad, and S. E. Alavi, “Definition of zachman
framework cells based on Service Oriented Architecture”,

International Journal of Scientific and Research Publications, vol.

3, no. 9, pp. 1–8, 2013.
[27] S. Khoshnevis, F. S. Aliee, and P. Jamshidi, “Model driven approach

to Service Oriented Enterprise Architecture”, in 2009 IEEE Asia-

Pacific Services Computing Conference (APSCC), 2009, pp. 279–
286.

[28] N. Benkamoun, W. ElMaraghy, A.-L. Huyet, and K. Kouiss,

“Architecture framework for manufacturing system design”,
Procedia CIRP, vol. 17, pp. 88–93, 2014.

[29] A. Setiawan and E. Yulianto, “E-government interoperability and

integration architecture modeling using TOGAF framework based
on Service Oriented Architecture”, The Asian Journal of Technology

Management, vol. 11, no. 1, pp. 26–45, 2018.

[30] L. Sofyana and A. R. Putera, “Business architecture planning with
TOGAF framework”, in Journal of Physics: Conference Series,

2019, vol. 1375, no. 1, p. 012056.

[31] I. Saepurrahman and I. D. Sumitra, “Designing Enterprise
Architecture for Sports Information System Platform Using the Open

Group Architecture Framework Architecture Development

Method”, in IOP Conference Series: Materials Science and
Engineering, 2019, vol. 662, no. 4, p. 042013.

[32] A. Kabzeva, M. Niemann, P. Müller, and R. Steinmetz, “Applying
TOGAF to Define and Govern a Service-oriented Architecture in a

Large-scale Research Project.”, in AMCIS, 2010, p. 356.

[33] F. Ni and R. Li, “TOGAF for Agile SOA Modelling”, 2017.
[34] A. Hodijah, S. Sundari, and A. C. Nugraha, “Applying TOGAF for

e-government implementation based on Service Oriented

architecture methodology towards good government governance”, in
Journal of Physics: Conference Series, 2018, vol. 1013, no. 1, p.

012188.

[35] M. Postina, J. Trefke, and U. Steffens, “An ea-approach to develop
soa viewpoints”, in 2010 14th IEEE International Enterprise

Distributed Object Computing Conference, 2010, pp. 37–46.

[36] M. Defriani and M. G. Resmi, “E-government architectural planning
using federal enterprise architecture framework in Purwakarta

districts government”, in 2019 Fourth International Conference on

Informatics and Computing (ICIC), 2019, pp. 1–9.

[37] H. Mahdavifar, R. Nassiri, and A. Bagheri, “A method to improve

test process in federal enterprise architecture framework using istqb

framework”, International Journal of Computer and Information
Engineering, vol. 6, no. 10, pp. 1199–1203, 2012.

[38] M. Tajuddin and A. B. Maulachela, “Integration and Interoperability

of Electronic-Based Government System (SPBE) Roadmap using
Federal Enterprise Architecture Framework (FEAF) Method”, in

Seminar Nasional Sistem Informasi (SENASIF), 2021, vol. 5, pp.

2889–2901.
[39] Thierry Biard, Michel Bigand, and Jean-Pierre Bourey, “La méthode

Praxeme : une nouvelle approche de l’Architecture d’Entreprise”,

2013.
[40] R. M. Andrianjaka, H. Razafimahatratra, T. Mahatody, M. Ilie, S.

Ilie, and R. N. Raft, “Automatic generation of software components

of the Praxeme methodology from ReLEL”, in 2020 24th
International Conference on System Theory, Control and Computing

(ICSTCC), 2020, pp. 843–849.

[41] J. L. Razafindramintsa, T. Mahatody, and J. P. Razafimandimby,
“Elaborate Lexicon Extended Language with a lot of conceptual

information”, arXiv preprint arXiv:1601.01517, 2016.

[42] R. M. Andrianjaka, R. Hajarisena, I. Mihaela, M. Thomas, I. Sorin,
and R. N. Raft, “Automatic generation of Web service for the

Praxeme software aspect from the ReLEL requirements model”,

Procedia Computer Science, vol. 184, pp. 791–796, 2021.
[43] A. Elmounadi, N. Berbiche, and N. Sefiani, “Model Driven

Architecture: Model Transformation Methods and Tools”, La

cinquième édition des Journées Doctorales en Technologies de
l’Information et de la Communication (JDTIC’13), Kenitra, Maroc,

2013.

[44] X. Blanc and O. Salvatori, "MDA in Action: Model-Driven Software
Engineering". Editions Eyrolles, 2011.

31

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 2, NO. 2, DECEMBER 2022, pp. 25-31

