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Abstract—The paper deals with interval observer design for
fuzzy switched positive systems. The systems are represented by
the Takagi-Sugeno fuzzy models, with premise variables depend-
ing on a measurable part of the state vector. Stability conditions
for the proposed interval observer structure are formulated via
linear matrix inequalities to ensure nonnegative system state
estimation. The proposed method allows to compute the lower
and upper bounds of the system state under the assumption that
the system disturbance are bounded. The properties of proposed
approach are illustrated in numerical example.

Index Terms—Takagi-Sugeno models, switched systems, Met-
zler systems, parametric constraints, interval observer design.

I. INTRODUCTION

The state observers of nonlinear dynamical systems has
always been a challenging research topic with large field of
applications. Useful for practical purposes have been shown
the Takagi-Sugeno (T-S) fuzzy models [1], addressing linear
models local dynamics to describe sector-bounded nonlinear
systems and preferring the state-space representation of sys-
tems. Consequently, the developments in this field [2], [3] have
traversed closely paralleled to linear system control theory,
where the key schemes contribute to maintain feasibility of
the linear matrix inequalities (LMI) [4].

Confining attention to the problems utilizing the same
features for systems with nonnegative states [5], [6], the
concept linearizing the equations describing the system is
conditioned by additional system parametric constraints [27]
and the theory of Metzler matrices [8], [9], to reflect the
system positiveness. An suitable unification is the LMI-based
design strategy for positive Metzler systems, proposed in [10],
reflecting the diagonal stabilization principle of systems.

Counterpart to systems with known and fixed matrix para-
metric representation, the interval approach is outlined in [11],
[12] to provide the bounded system state estimation for given
system matrix bounds. In addition, [13] presents an approach
for interval observer analysis using Metzler matrix properties
and these conditions motivated the interval observers design
approach for T-S systems in [14], [15]. The switched systems
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introduces another principal difficulty that follows from de-
sired system state positivity [16].

The same principal questions arising above are combined
in the case of control design for T-S fuzzy switched systems
[17], [18], [19], [20], [21] and in the technique of interval
observers for switched T-S fuzzy systems [22], where posi-
tiveness becomes more relevant. It has to be underlined that
pervasive deployments of these approaches have constituted
an important base platform in controller and interval observer
design for uncertain switched T-S fuzzy systems.

The challenge, of course, is to extended the above stand-
alone solutions associated with T-S fuzzy systems in design-
ing the interval observers for Metzler-Takagi-Sugeno (M-T-
S) fuzzy switching systems. Formulating problem with LMI
based preference, the interval switching observer stability
conditions reflect standard arguments and incorporate the
notion of diagonal stabilization that has to be in keeping when
working with the Metzler system matrix structures. The results
presented in this paper substantially extend and strengthen the
results given in [23] to accomplished the relationships between
system matrix parametric constraints, the LMIs feasibility and
the observer state upper and lover vector state estimation.
Because the only tools from the field of LMIs complexity
are effectively deployed defining the switched interval fuzzy
observer conditions, practical aspects are standard.

The paper is organized as follows. In Section II the observer
design for T-S fuzzy systems is adduced. For given class of
M-T-S fuzzy switched systems the set of LMIs, describing the
design conditions for M-T-S fuzzy switched interval observer,
is presented in Section III and the solution is illustrated Section
IV by a numerical illustrative example. Within the underlying
concept, Section V draws conclusions and some topics of the
authors’ research activity in the future.

Throughout the paper, the following notations are used: xT,
XT denotes the transpose of the vector x, and the matrix X ,
respectively, diag [ · ] marks a (block) diagonal matrix, for a
square symmetric matrix X ≺ 0 means that X is negative
definite matrix, the symbol In indicates the n-th order unit
matrix, R (R+) qualifies the set of (nonnegative) real numbers,
Rn×n (Rn×n

+ ) refers to the set of (nonnegative) real matrices
and Rn×n

−+ covers the set of Metzler matrices.
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II. TAKAGI-SUGENO FUZZY SWITCHING OBSERVER

The used class of n-dimensional continuous-time switching
systems are the sector nonlinear dynamic systems, represented
by the T-S fuzzy compact form description

q̇(t) =

s∑
i=1

hσi (ϑ(t))(A
σ
i q(t) +Bσ

i u(t)) +Dd(t) (1)

y(t) = Cσq(t) (2)

actual where q(t) ∈ Rn, u(t) ∈ Rr, y(t) ∈ Rm, are vectors
of the state, input, and output variables, d(t) ∈ Rd is the
bounded additive disturbance and Aσ

i ∈ Rn×n, Bσ
i ∈ Rn×r,

Cσ ∈ Rm×n, D ∈ Rn×d are the local model parameters.
Related to a switching sequence σ(t) defined on R+ and

taking values in the set Σ = {1, . . . ns}, where ns is a positive
integer, the index σ denotes an active switching mode.

The T-S fuzzy model from a given nonlinear dynamical
model can be obtained by the sector nonlinearity approach
[4], whilst hσ

i (θ(t)) is averaging weight for the i-th fuzzy
rule, representing the normalized grade of membership, where
for all i ∈ {1, . . . , s}, σ ∈ {1, . . . , ns}

0 ≤ hσi (ϑ(t)) ≤ 1,

s∑
i=1

hσi (ϑ(t)) = 1 (3)

while s is the number of the fuzzy rules and

ϑ(t) =
[
θ1(t) θ2(t) · · · θo(t)

]
(4)

is o-dimensional vector of premise variables. It is supposed in
the following that the premise variables are composed only on
the set of variables from q(t) and all are measurable, so ϑ(t)
is available online.

The task can be turned to construction of the T-S fuzzy
observer, switching together with the system and defined as

q̇e(t) =

s∑
i=1

hσ
i (ϑ(t))(A

σ
i qe(t) +Bσ

i u(t))+

+

s∑
i=1

hσ
i (ϑ(t))J

σ
i C

σ(q(t)− qe(t))

(5)

y(t) = Cσq(t) (6)

where Jσ
i ∈ Rn×m for i ∈ {1, . . . , s}, σ ∈ {1, . . . , ns} are

the observer parameters and qe(t) ∈ Rn is the observer state.
Introducing the errors in the observation

e(t) = q(t)− qe(t), ey(t) = Cσe(t) (7)

then the dynamics of the state observation error e(t) is evolved
according to the following equation

ė(t) =

s∑
i=1

hσ
i (ϑ(t))(A

σ
i − Jσ

i C
σ)e(t) + d(t)

=

s∑
i=1

hσ
i (ϑ(t))A

σ
eie(t) + d(t)

(8)

where an observer switching parameter structure is

Aσ
ei = Aσ

i − Jσ
i C

σ (9)

Theorem 1: If in the fuzzy model (1), (2) are included the
mentioned assumptions on the premise variables and there
exist a symmetric positive definite matrix P ∈ Rn×n, the
matrices V σ

i ∈ Rn×m and a positive scalar ξ ∈ R+ such that
for all i ∈ {1, . . . , s}, σ ∈ {1, . . . , ns} the following set of
LMIs

P = PT ≻ 0, ξ > 0 (10)PAσ
i +AσT

i P − V σ
i C

σ −CσTV σT
i ∗ ∗

DTP −ξId ∗
Cσ 0 −ξIm

 ≺ 0

(11)
is feasible then, guaranteeing the attenuation of the distur-
bances effect by an upper bound ξ of the H∞ norm of the
disturbance transform matrix, the switching T-S fuzzy observer
(5), (6), is asymptotically stable and the observer gains can be
find for i ∈ {1, . . . , s}, σ ∈ {1, . . . , ns} as

Jσ
i = P−1V σ

i (12)

Proof: A positive Lyapunov function candidate v(e(t) can
be served for a stable fuzzy equation (8) if with a symmetric
positive definite matrix P ∈ Rn×m and with a positive scalar
ξ ∈ R+

v(e(t)) = eT(t)Pe(t)+

+ ξ−1

∫ t

0

(eTy (τ)ey(τ)− ξ2dT(τ)d(τ))dτ

> 0

(13)

Calculating the time derivative of v(e(t) along the trajectory
of the fuzzy relation (8) the following outcome

v̇(e(t)) = ėT(t)Pe(t) + eT(t)P ė(t)+

+ ξ−1eTy (t)ey(t)− ξdT(t)d(t)
(14)

has to be prescribed as negative.
Thus, by substituting (8), it can be seen that

v̇(e(t)) =

s∑
i=1

hσ
i (ϑ(t))e

T(t)(AσT
ei P + PAσ

ei)e(t)+

+ eT(t)PDd(t) + dT(t)DTPe(t))+

+ ξ−1eT(t)CσTCσe(t)− ξdT(t)d(t)

< 0

(15)

Letting the following

eTd (t) =
[
eT(t) dT(t)

]
(16)

it can be concluded that

v̇(ed(t)) =

s∑
i=1

hσ
i (ϑ(t))e

T
d (t)Ξ

σ
i ed(t) < 0 (17)

where, by the used labeling,

Ξσ
i =

[
AσT

ei P + PAσ
ei + ξ−1CσTCσ ∗

DTP −ξId

]
≺ 0 (18)
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Then, by Schur complement, it follows from (18) thatPAσ
ei +AσT

ei P ∗ ∗
DTP −ξId ∗
Cσ 0 −ξIm

 ≺ 0 (19)

By following the observer error system matrix structure, the
design parameters can be included as

PAσ
ei = PAσ

i − PJσ
i C

σ = PAσ
i − V σ

i C
σ (20)

where, for i ∈ {1, . . . , s}, σ ∈ {1, . . . , ns},

V σ
i = PJσ

i (21)

Thus, it can be concluded that (20) implies (11). The proof
is complete.

Remark 1: This is a convex optimization problem which
can be solved in polynomial time [24] using an available
LMI toolbox. If the above set of LMIs is feasible and the
observer matrix gains are calculated as (12) for i ∈ {1, . . . , s},
σ ∈ {1, . . . , ns} then qe(t) can be solved using a convex
combination of fuzzy matrix parameters by (11).

It is no restriction in generality to assume that the vector of
unknown disturbance d ∈ Rd is performed through a matrix
D ∈ Rn×d.

III. METZLER-TAKAGI-SUGENO FUZZY SWITCHING
INTERVAL OBSERVERS

In this focus there are considered only known interval
values of a nonnegative disturbance d(i) ∈ Rn

+, nonnegative
matrices Bσ

i ∈ Rn×r
+ , C ∈ Rn×n

+ and a strictly Metzler
Aσ

i ∈ Rn×n
−+ , where the notation strictly Metzler Aσ

i means
that all off diagonal elements of Aσ

i are greater then zero and
all diagonal elements of Aσ

i are negative for all i ∈ {1, . . . , s},
σ ∈ {1, . . . , ns}. This class of system parameter representa-
tions means an interval strictly M-T-S fuzzy switching positive
system, characterized by nonnegative state vectors within the
interval bounds. The interval constraints mean that for all
i ∈ {1, . . . , s}, σ ∈ {1, . . . , ns} the system parameters,
disturbance and the system state vector satisfy element-wise

Aσ
i ≤ Aσ

i ≤ A
σ

i , Cσ ≤ Cσ ≤ C
σ

(22)

0 ≤ q(0) ≤ q(0) ≤ q(0), ϑ(t) ≤ ϑ(t) ≤ ϑ(t) (23)

and, moreover, for all t ≥ 0

d ≤ d(t) ≤ d, d = −d (24)

Assumption (24) is standard in relation to the interval
observers [25], where the uncertainties are assumed to be
bounded with known bounds.

Since for a positive system (1), (2) the conditions (23) yield,
the interval observer for this M-T-S switched structure is the
generalization of (5) in such a way that for

y(t) = C
σ
q(t), y(t) = Cσq(t) (25)

it can be prescribed if the premise variables are measurable

q̇e(t) =
s∑

i=1

hσ
i (ϑ(t))(A

σ

i qe(t) +Bσ
i u(t))+

+

s∑
i=1

hσ
i (ϑ(t))J

σ
i C

σ(q(t)− qe(t))

(26)

q̇
e
(t) =

s∑
i=1

hσ
i (ϑ(t))(A

σ
i qe

(t) +Bσ
i u(t))+

+

s∑
i=1

hσ
i (ϑ(t))J

σ
i C

σ
(q(t)− q

e
(t))

(27)

where the design objective constraints can be stated for a
positive t ≥ 0 as

0 ≤ q
e
(t) ≤ q(t) ≤ qe(t) (28)

if qe(0) = q(0), q
e
(0) = q(0).

Supposing only to the upper and lower M-T-S fuzzy limiting
interval system description

q̇(t) =

s∑
i=1

hσi (ϑ(t))(A
σ

i q(t) +Bσ
i u(t)) +Dd(t) (29)

q̇(t) =

s∑
i=1

hσi (ϑ(t))(A
σ
i q(t) +Bσ

i u(t)) +Dd(t) (30)

and defining the upper and lower observer error vectors as
follows

e(t) = q(t)− qe(t), e(t) = q(t)− q
e
(t) (31)

ey(t) = Cσ
i e(t), ey(t) = C

σ

i e(t) (32)

then, by subtracting (26) from (29), as well as by subtracting
(27) from (30), the following dynamics can be obtained with
i ∈ {1, . . . , s}, σ ∈ {1, . . . , ns}.

ė(t) =

s∑
i=1

hσi (ϑ(t))A
σ

eie(t) +Dd(t) (33)

ė(t) =

s∑
i=1

hσi (ϑ(t))A
σ
eie(t) +Dd(t) (34)

where the following notation is used

A
σ

ei = A
σ

i − Jσ
i C

σ, Aσ
ei = Aσ

i − Jσ
i C

σ
(35)

Remark 2: The used approach does not exclude the con-
struction of M-T-S fuzzy switching interval observers for a
class of M-T-S fuzzy switching system with defined interval
boundaries on non-negative input matrix parameters B

σ

i , Bσ
i .

In practice, however, this means in such a case to use a
special method for the control synthesis with an insight into the
interval input of the system. However, these non-negative input
matrix parameters do not enter the interval observer synthesis
conditions.
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To simplify comparative interpretation of the proposed
results, the following theorem for disturbance-free Metzler-
Takagi-Sugeno fuzzy observer (not switched and with d(i) =
0) is presented.

Theorem 2: [26] Assuming that q(0), q(0) are known and
the initial state q(0) verifies that 0 ≤ q(0) ≤ q(0) ≤ q(0),
then the matrices Aei, Aei ∈ Rn×n

−+ for all i ∈ {1, . . . , s}
are strictly Metzler and Hurwitz if for given strictly Metzler
matrices Ai,Ai ∈ Rn×n

−+ and non-negative matrices C,C ∈
Rm×n

+ there exist positive definite diagonal matrices P ,V ik ∈
Rn×n

+ such that for h = 1, . . . , n− 1 the followin inequalities
are satisfied

P ≻ 0, V ik ≻ 0 (36)

PAi +A
T

i P −
m∑

k=1

V ikll
TCdk −

m∑
k=1

Cdkll
TV ik ≺ 0 (37)

PAi +AT
i P −

m∑
k=1

V ikll
TCdk −

m∑
k=1

Cdkll
TV ik ≺ 0 (38)

PAi(ν, ν)−
m∑

k=1

V ikCdk ≺ 0 (39)

PAi(ν, ν)−
m∑

k=1

V ikCdk ≺ 0 (40)

PLhAi(ν + h, ν)LhT −
m∑

k=1

V ikL
hCdkL

hT ≻ 0 (41)

PLhAi(ν + h, p)LhT −
m∑

k=1

V ikL
hCdkL

hT ≻ 0 (42)

where

L =

[
0T 1
In−1 0

]
, C =

 c11 . . . c1n...
cm1. . . cmn

 , C =

 c11 . . . c1n...
cm1. . . cmn


(43)

Cdk = diag
[
ck1. . . ckn

]
, Cdk = diag

[
ck1· · · ckn

]
(44)

l =

1...
1

 , Ai =

ai11 . . . ai1n...
ain1. . . ainn

 , Ai =

ai11 . . . ai1n...
ain1. . . ainn


(45)

Ai(ν, ν) = diag
[
ai11· · · ainn

]
(46)

Ai(ν, ν) = diag
[
ai11· · · ainn

]
(47)

Ai(ν + h, ν)

= diag
[
ai,1+h,1· · · ai,n,n−h ai,1,n−h+1· · · aihn

] (48)

Ai(ν + h, ν)

= diag
[
ai,1+h,1· · · ai,n,n−h ai,1,n−h+1· · · aihn

] (49)

When these conditions are successfully met then the rules to
compute the set of strictly positive observer gains J i ∈ Rn×m

+

are

Jdik = P−1V ik, jik = Jdikl, J i =
[
ji1· · · jim

]
(50)

Remark 3: A strictly Metzler system matrix A = {aij}ni,j=1,
A = {alj}nl,j=1, respectively, makes unnecessary considera-
tion of n2 constraints (for every interval parameter structure)

ajj < 0 ∀ j = 1, . . . , n, alj,l ̸=j > 0 ∀ l, j = 1, . . . , n (51)

ajj < 0 ∀ j = 1, . . . , n, alj,l ̸=j > 0 ∀ l, j = 1, . . . , n (52)

This just means in consequence to apply diagonal stabiliza-
tion principle [27] in analysis. Such an assumption provides a
new scheme to describe design conditions.

If a strictly Metzler A ∈ Mn×n
−+ is represented with relation

to the observer design task in the following rhombic form,
where the diagonal local exactness are constructed by the
column index defined multiple circular shifts of elements of
the columns of A as follows [10]

AΘ =



a11
a21 a22
a31 a32 a33
...

...
...

. . .
an1 an2 an3 · · · ann

a12 a13 · · · a1n
a23 · · · a2n

. . .
...

an−1,n


(53)

then the diagonal matrix structures, related to AΘ with the
index h = 0, . . . , n− 1

A(ν, ν) = diag
[
a11 a22 · · · ann

]
≺ 0 (54)

A(ν + h, ν) = diag
[
a1+h,1· · · an,n−h a1,n−h+1· · · ah,n

]
≻ 0
(55)

represent the set of Metzler parametric constraints

ajj < 0 ∀j = 1, . . . , n, alj,l ̸=j > 0 ∀ l, j = 1, . . . , n (56)

Thus, generalising for (51), (52), the diagonal structures
(46)-(49) can be defined.

Moreover, utilization of this principle leads to the Metzler
matrix A parameterizations as [28]

A =

n−1∑
h=0

A(ν + h, ν)LhT (57)

where L ∈ Rn×n is the circulant permutation matrix (43).
Corollary 1: According to (57) the parameterizations of

A
σ

ei, A
σ
ei can be written as

Aei =

n−1∑
h=0

(
A

σ

i (ν + h, ν)−
m∑

k=0

Jσ
ikhC

σ
dk

)
LhT (58)

Aei =

n−1∑
h=0

(
Aσ

i (ν + h, ν)−
m∑

k=0

Jσ
ikhC

σ

dk

)
LhT (59)
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where, with relation to Jσ , Cσ , C
σ

the diagonal matrices
Jσ

ikh,C
σ
dk,C

σ

dk ∈ Rn×n
+ are defined as

Cσ =

c
σT
1
...

cσTm

 , Cσ
dk = diag

[
cσTk

]
(60)

C
σ
=

c
σT
1
...

cσTm

 , C
σ

dk = diag
[
cσTk

]
(61)

Jσ
i =

[
jσi1· · · j

σ
im

]
, Jσ

ik = diag
[
jσik
]
, Jσ

ikh = LhTJσ
ikL

h

(62)
and

A
σ

i (ν, ν) = diag
[
aσi11 · · · aσinn

]
(63)

Aσ
i (ν, ν) = diag

[
aσi11· · · aσinn

]
(64)

A
σ

i (ν + h, ν)

= diag
[
aσi,1+h,1· · · aσi,n,n−h aσi,1,n−h+1· · · aσihn

] (65)

Aσ
i (ν + h, ν)

= diag
[
aσi,1+h,1· · · aσi,n,n−h aσi,1,n−h+1· · · aσihn

] (66)

Through these supporting formulations, the relationship
between the M-T-S fuzzy switching interval dynamical system
and the corresponding M-T-S fuzzy switching interval observer
is derived in the following theorem.

Theorem 3: The matrices A
σ

ei, Aσ
ei ∈ Rn×n

−+ for all i ∈
{1, . . . , s}, σ ∈ {1, . . . , ns} are strictly Metzler and Hurwitz
if for given strictly Metzler matrices, A

σ

i ,A
σ
i ∈ Rn×n

−+ ,
non-negative matrices C,C ∈ Rm×n

+ and for from these
matrices derived diagonal matrix parameters (60)-(62) there
exist positive definite diagonal matrices P ,V σ

ik ∈ Rn×n
+

and a positive scalar ξ ∈ R+ such that for i = 1, . . . , s,
h = 1, . . . , n− 1, σ ∈ {1, . . . , ns}

P ≻ 0, V σ
ik ≻ 0 (67) Ω

σ

i ∗ ∗
DTP −ξId ∗
Cσ 0 −ξIm

 ≺ 0 (68)

 Ωσ
i ∗ ∗

DTP −ξId ∗
C

σ
0 −ξIm

 ≺ 0 (69)

PA
σ

i (ν, ν)−
m∑

k=1

V σ
ikCdk ≺ 0 (70)

PAσ
i (ν, ν)−

m∑
k=1

V σ
ikCdk ≺ 0 (71)

PLhA
σ

i (ν + h, ν)LhT −
m∑

k=1

V σ
ikL

hCdkL
hT ≻ 0 (72)

PLhAσ
i (ν + h, p)LhT −

m∑
k=1

V σ
ikL

hCdkL
hT ≻ 0 (73)

where

Ω
σ

i = PA
σ

i +A
σT

i P −
m∑

k=1

V σ
ikll

TCdk −
m∑

k=1

Cdkll
TV σ

ik

(74)

Ωσ
i = PAσ

i +AσT
i P −

m∑
k=1

V σ
ikll

TCdk −
m∑

k=1

Cdkll
TV σ

ik

(75)
If the task is feasible, the rules to compute the set of strictly

positive gains Jσ
i ∈ Rn×m

+ , i ∈ {1, . . . , s}, σ ∈ {1, . . . , ns},
are

Jσ
dik = P−1V σ

ik, jσik = Jσ
dikl, Jσ

i =
[
jσi1· · · j

σ
im

]
(76)

Proof: According to the parametrization of A
σ

ei, A
σ
ei (58),

(59) it has to yield for all i, σ and h = 0

A
σ

i (ν, ν)−
m∑

k=0

Jσ
ikC

σ
dk ≺ 0 (77)

A
σ

i (ν, ν)−
m∑

k=0

Jσ
ikC

σ
dk ≺ 0 (78)

and for all i, σ and h = {1, . . . , n− 1}

A
σ

i (ν + h, ν)LhT −
m∑

k=0

Jσ
ikhC

σ
dkL

hT ≻ 0 (79)

Aσ
i (ν + h, ν)LhT −

m∑
k=0

Jσ
ikhC

σ

dkL
hT ≻ 0 (80)

Multiplying by the positive definite diagonal matrix P the
left side of (77), (78), respectively, it yields

PA
σ

i (ν, ν)−
m∑

k=0

PJσ
ikC

σ
dk ≺ 0 (81)

PA
σ

i (ν, ν)−
m∑

k=0

PJσ
ikC

σ
dk ≺ 0 (82)

and using the notation

V σ
ik = PJσ

ik (83)

then (81), (82) imply (70), (71).
Substituting (62) and multiplying by PLh the left side of

(77), (78), respectively, now it yields

PLhA
σ

i (ν + h, ν)LhT −
m∑

k=0

PJσ
ikL

hCσ
dkL

hT ≻ 0 (84)

PLhAσ
i (ν + h, ν)LhT −

m∑
k=0

PJσ
ikL

hC
σ

dkL
hT ≻ 0 (85)

and with the notation (83) then (84), (85) imply (72), (73).
In the given sense then (70)-(73) force the Metzler para-

metric constraints in the design task.
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Considering the common Lyapunov function (13) for the
lower dynamic (31), (32) means

v(e(t)) = eT(t)Pe(t)+

+ ξ−1

∫ t

0

(eTy (τ)ey(τ)− ξ2 dT(τ)d(τ))dτ

> 0

(86)

and in the same way of the proof of Theorem 1 it follows that

v̇(e(t)) = ėT(t)Pe(t) + eT(t)P ė(t)+

+ ξ−1eTy (t)ey(t)− ξ dT(t)d(t)

< 0

(87)

v̇(e(t)) =

s∑
i=1

hσ
i (ϑ(t))e

T(t)(AσT
ei P + PAσ

ei)e(t)+

+ eT(t)PDd(t) + dT(t)DTPe(t))+

+ ξ−1eT(t)C
σT

C
σ
e(t)− ξdT(t)d(t)

< 0

(88)

Analogously to (16) by defining

eTd (t) =
[
eT(t) dT(t)

]
(89)

it can be written that

v̇(ed(t)) =

s∑
i=1

hσ
i (ϑ(t))e

T
d (t)Ξ

σ
i ed(t) < 0 (90)

where, by the used labeling,

Ξσ
i =

[
PAσ

ei +AσT
ei P + ξ−1C

σT
C

σ ∗
DTP −ξId

]
≺ 0 (91)

and, consequently, the structure (69) results using Schur com-
plement property to (91) Ωσ

i ∗ ∗
DTP −ξId ∗
C

σ
0 −ξIm

 ≺ 0 (92)

where
Ωσ

i = PAσ
ei +AσT

ei P (93)

Substituting (35) into (93) and using the properties (60),
(50) then

Ωσ
i

=P (Aσ
i − Jσ

i C
σ
) + (Aσ

i − Jσ
i C

σ
)TP

=P
(
Aσ

i −
m∑

k=1

jσikc
σT
k

)
+
(
Aσ

i −
m∑

k=1

jσikc
σT
k

)T
P

=P
(
Aσ

i −
m∑

k=1

Jσ
ikll

TC
σ

dk

)
+
(
Aσ

i −
m∑

k=1

Jσ
ikll

TC
σ

dk

)T
P

(94)
Thus, applying (83) to (94) then (75) implies.
Considering the common Lyapunov function (13) for the

upper dynamics (31), (32), the condition (68) and (74) can be
proven similarly. This concludes the proof.

IV. ILLUSTRATIVE EXAMPLE

The system is represented by the M-T-S fuzzy switching
model (1), (2), where [23]

A1
1 =

−0.272 1.940 1.450
0.058−3.960 0.050
0.100 0.050−2.910

 , C1 = C2 =

[
0.9 0 0
0 1.2 0

]

A1
2 =

−0.272 1.940 1.450
0.058−3.960 0.100
0.100 0.050−2.910

 , L =

0 0 1
1 0 0
0 1 0



A2
1 =

−0.272 1.940 1.450
0.058−3.960 0.050
0.100 0.080−2.910



A2
2 =

−0.272 1.940 1.450
0.058−3.960 0.100
0.100 0.080−2.910



A
1

1 =

−0.258 2.060 1.550
0.142−3.640 0.060
0.200 0.070−2.550

 , C
1
= C

2
=

[
1.1 0 0
0 1.5 0

]

A
1

2 =

−0.258 2.060 1.550
0.142−3.640 0.100
0.200 0.060−2.550

 , l =

11
1



A
2

1 =

−0.258 2.060 1.550
0.142−3.640 0.070
0.200 0.080−2.550



A
2

2 =

−0.258 2.060 1.550
0.142−3.640 0.100
0.200 0.080−2.550


DT =

[
0.04 0.08 0.05

]
, d = 0.7, d = −d

It is not hard to attest that A
σ

i , Aσ
i are strictly Metzler

and Hurwitz for all i, σ, Aσ
i ≤ A

σ

i , C ≤ C, and C, C are
nonnegative matrices.

The diagonal stabilization principle call for associated di-
agonal representations of C, C

Cd1 = diag
[
0.9 0 0

]
, Cd2 = diag

[
0 0.2 0

]
Cd1 = diag

[
1.1 0 0

]
, Cd2 = diag

[
0 0.5 0

]
and for circulant diagonal representations of the matrices Aσ

i

where for illustration

A1
1(ν, ν) = diag

[
−0.272−3.960−2.910

]
A1

1(ν + 1, ν) = diag
[
0.058 0.050 1.450

]
A1

1(ν + 2, ν) = diag
[
0.100 1.940 0.050

]
.

Using the toolbox SeDuMi [29] means construction of
N = 42 matrix inequalities, from which Nmv = 10 prescribe
the positivity of the matrix variables, Nst = 8 declare the Lya-
punov stability condition and Npb = 24 define the parametric
boundaries for final Metzler matrix in the observer’s structure.
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The feasible solution of (67)-(75) produces LMI variables
as follows

P = diag
[
4.1339 2.6156 4.4060

]
, ξ = 6.9236

V 1
11 = diag

[
4.8067 0.0509 0.1224

]
V 1

12 = diag
[
3.0868 1.3516 0.0568

]
V 1

21 = diag
[
4.8080 0.0509 0.1225

]
V 1

22 = diag
[
3.0879 1.3514 0.0541

]
V 2

11 = diag
[
4.8076 0.0509 0.1225

]
V 2

12 = diag
[
3.0873 1.3515 0.0806

]
V 2

21 = diag
[
4.8091 0.0510 0.1226

]
V 2

22 = diag
[
3.0885 1.3515 0.0806

]
whilst (76) implies the positive observer gain matrices

J1
1 =

1.1627 0.7467
0.0194 0.5167
0.0278 0.0129

 , J1
2 =

1.1630 0.7467
0.0195 0.5166
0.0278 0.0129


J2

1 =

1.1630 0.7468
0.0196 0.5167
0.0278 0.0183

 , J1
2 =

1.1633 0.7471
0.0195 0.5167
0.0278 0.0183


guaranteing all Metzler and Hurwitz stable matrices of the
switched interval observer.

For illustration

A1
e1 =

−1.5510 0.8200 1.4500
0.0366−4.7351 0.0500
0.0694 0.0307−2.9100

 , ρ(A1
e1) =

−1.4709
−2.9805
−4.7447


Ae1 =

−1.3045 1.1640 1.5500
0.1245−4.2601 0.0600
0.1750 0.0545−2.5500

 , ρ(A
1

e1) =

−1.0707
−2.7355
−4.3083


where. evidently, A1

e1 < A
1

e1.
Having in mind (22) it is not hard to verify that the condition

Aσ
ei ≤ A

σ

ei is satisfied for all i = 1, 2, σ = 1, 2.
Note, the small complexity of the LMI algorithmic problems

and LMIs feasibility can be checked also when programming
the task using the LMI toolbox of MATLAB©.

The method can be easily adapted exploiting structured
matrix variables for design of M-T-S fuzzy switched interval
observers for purely Metzler system matrices, where the off-
diagonal elements of a Metzler matrix are non-negative, by
using the method presented in [30]. In such a case the solution
results in existence of nonnegative Jσ

i , guaranteing purely
Metzler and Hurwitz switched observer’s matrices Aσ

ei,A
σ

ei.
As can be seen from the example, the proposed procedure

transforms the problem of M-T-S fuzzy switched interval
observers design to convenient LMI forms.

V. CONCLUDING REMARKS

By utilising information of both the upper bound and the
lower bound of premise variables and their actual real-time
measurement, it is formulated a finite number of LMIs to
prescribe nonnegative interval observer gains in construction
of the system Metzler and Hurwitz matrices in the design task
for interval switched M-T-S fuzzy observers. The novelty lies
in a common LMI-based encompassing of interval bounds,
Metzler matrix parameters and stability conditions in the
problem formulation. The implementation exploits by this way
defined procedures to manipulate the interval switched M-T-S
fuzzy observer stability and the Metzler structural bounds, as
well as to guarantee convergence to equilibria of the estimation
errors. The presented example indicates that the defined LMI
forms are applicable in synthesis of the interval observers for
uncertain M-T-S fuzzy systems.

Generalizing interval state estimation of switched M-T-S
fuzzy observers, further research can be potentially focused
on positive control of agent systems and stochastic nonlinear
switched systems. The same methods of solution can be
motivation to the algorithmic support when designing the
interval observers for fractional T-S fuzzy switched systems.
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