
Harnessing Performance Counters to Detect

Malware Using Deep Learning Models

Omar Mohamed

Necmettin Erbakan University, Konya, Turkey

University Politehnica of Timişoara, Timisoara, Romania
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Abstract—Computing systems are challenged by security ex-
ploits and malware. The following methods are used for detecting
anomalies and discovering vulnerabilities in computing systems:
malware aware processors, static program analysis, and dynamic
program analysis. Online hardware to detect malware is not
always a practical and scalable solution because of the costs.
Automated static analysis tools have limited performance and de-
tection capabilities that may not meet the criticality requirements
of the project regarding static analysis methods. In the latest
trends, dynamic analysis has overcome static analysis. Several
approaches have been used to analyze performance counters
in this sense. Performance counters are collected from both
operating systems/software and processors/hardware and stored
as time series: 1) in the presence and 2) in the absence of
malware. For software performance counters (SPCs), fourteen
deep learning models were used for time series classification,
while for hardware perfornamce counters (HPCs), ten deep
learning models were used. For SPCs two models were able to
detect accurately malware in infected operating systems, while
the rest tend to overfit the data. For HPCs three models were
able to detect malware.

Index Terms—malware, software performance counters, hard-
ware performance counters, program behaviour, time series clas-
sification, deep learning classification models, recurrent neural
networks

I. INTRODUCTION

In the context of globalization the physical border security

devices of a state-nation do not protect its digital infrastructure.

Nowadays security attacks occur at a high rate and are various

and complex. It was estimated by anti-virus companies that

the number of malware is at the size of tens of millions.

Malware has a huge rate of growth, namely over 300 new

threats are created each minute. The malware term denotes

malicious software that can damage other software systems.

Companies and state-nation organizations servers are pro-

tected by hardware e.g. firewalls, intrusion prevention systems

(IPS), intrusion detection systems (IDS) and software e.g. anti-

viruses (AV) solutions.

Hardware protection is usually expensive and thus not

always accessible.

The problem with AVs is that in the traditional approach

they have static signatures in order to detect malware. Attack-

ers can program malware such that it exhibits benign software

signatures. On the other hand, AVs are prone to exploits and

they are consuming a considerable amount of resources, so

they are difficult to be used in real-time protection.

One solution is a detector that classifies programs by iden-

tifying malware and then helps applying expensive software

based solutions. Such a classification can be made based on

logistic regression and neural networks. Hardware classifiers

implemented by FPGA malware aware processors are not

always practical and scalable. HPCs do not require additional

hardware and relies on the presence of the microprocessor.

One disadvantage of the HPCs is that their collection in a

continuous time series is limited to 4-6 event types.

In this context a malware detector based on the dynamic

behavior of computer programs may overcome the static based

detection. The dynamic behavior is expressed as performance

counters time series collected from the operating system and/or

from the processor.

In this paper we augment a framework for training and

evaluating deep learning models that detects malware based

on SPCs time series classification [13].

In Figure 1 we present conceptually our approach.

We start our approach at a Virtual Machine (VM) level

running programs in the presence and absence of malware.

The malware used in the experiments were obtained from the

VirusTotal [18] company. On the VM we run in parallel a tool

that collects 23 performance counters grouped into time series.

Next, the results are normalized using statistical operators like

Min-Max and Z-Score. Additionally, in our study we use time

series obtained from other experiments based on HPCs [22].

On the normalized time series we train fourteen classification

models for SPCs and ten classification models for HPCs [7]:

1) Residual neural network (ResNet);

2) Convolutional Neural Network (CNN);

3) Time Le-Net (t-LeNet);

4) Fully Convolutional Neural Network (FCN);

5) Multi Layer Perceptron (MLP);

6) Encoder;

7) Multi-scale Convolutional Neural Network (MCNN);

8) Multi Channel Deep Convolutional Neural Network

(MCDCNN);

9) Time Convolutional Neural Network (Time-CNN);

10) Inception Time.

11) RNN implementaions (LSTM, GRU and vanilla RNN)

[1]

On the trained classification models accuracy tests were per-

formed and corresponding graphs were plotted. We consider
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Fig. 1. Approach

that the trained classifiers could be used on a real machine as

a malware detection tool.

The paper is structured as follows. Section II presents re-

lated works in the field of program behavior analysis based on

performance counters and deep learning classification models.

Section III presents the design of the performance counters

extraction tool and the configuration of the deep learning

classification models. Section IV-A presents the experimen-

tal results from the trained classification models. Section V

analyzes the experimental results. Section VI concludes and

sets the future work.

II. RELATED WORKS

The works of [9], [13] are the seminal papers for our

approach. The work of Kadiyala et al. [9] explore performance

counters to analyze the behavior of programs at run-time. They

developed a prototype bases on operating system’s calls to

capture the values of performance counters. Thus, time series

are formed describing the behavior of programs in a given

period of time. Next, they develop a semi-supervised clustering

algorithms to group programs by their intrinsic behavior. The

experiments they carry are based on 18 programs grouped in 4

clusters: web browsers, text editors, image viewers and audio

players. They conclude from the experiments that the perfor-

mance counters accurately differentiate the dynamic behavior

of four clusters of programs. They claim that the results are

not influenced by the virtual or physical environment where

the programs run.

In [11] is presented a machine learning based approach that

optimizes hyper-parameters of machine learning models ap-

plied to malware detection problems. Two automated machine

learning (AutoML) frameworks are used, namely AutoGluon-

Tabular and Microsoft Neural Network Intelligence. They

optimize the parameters of Light Gradient Boosted Machine

(LightGBM) that is in charge with malware samples classifi-

cation. In our approach we use classification models with no

hyper-parameter optimization from [7] except two models.

In [4] is presented a hardware-assisted malware detection

(HMD) technique using machine learning classifiers. The

approach is based on low-level micro-architectural events

captured by hardware performance counters. In the approach

they create an adversarial attack on the HMD systems using

an adversarial sample predictor. Their intention is to tamper

the security by introducing perturbations in the HPC series.

In [17] is presented a machine learning approach based on

hardware assisted profiling of browser code in real-time. The

model classifies unauthorized mining applications even if their

code is heavily obfuscated or encrypted.

In [15] is presented a machine learning approach that detects

malware based on HPCs. They implemented the classifier at

the OS kernel level which slowed down the system, which,

finally they accelerated on an FPGA. They used the following

models: Multi Layer Perceptron (MLP) and OneR.

In [14] is presented a deep semi-supervised learning-based

network anomaly detector operating in heterogeneous infor-

mation systems. They rely on deep recurrent autoencoder

which learns the time series of normal network behavior

and detects network anomalies. Optimizations are applied on

the proposed features reducing their number by 94% without

loosing accuracy.

In [2] is presented a mathematical framework to investigate

the probability of malware detection based on HPC monitoring

at a fixed sample interval. HPCs are read after every 500 cy-

cles. They use a control flow graph representation of programs.

The graph visit has a set of HPCs values as signatures for each

visited node.

In [22] is presented an approach of detecting malware

based on HPCs using models like: Decision Trees, Random

Forest, K-Nearest Neighbours (KNN), Adaboost, Neural Net

(NN) and Naive Bayes. They cross-validated their model 1000

times which resulted in low F1-scores. They use a sampling

frequency of 1 KHz for their HPC measuring tool. They

downloaded 1000 malware from VirusTotal, grouped in 35

distinct malware families and run them for 1 minute.
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III. EXPERIMENTAL SETUP

In this section we will present our experimental setup based

on: i) a C# tool PerfExtract for performance counters

extraction as time series; ii) runtime environment for malware

and benignware; iii) 14 for SPCs and 10 for HPCs deep

learning classification models used to analyze the time series;

iv) a Python prototype for training the models and plotting the

results.

A. Software Performance Counters Extraction Tool - PerfEx-

tract

The PerfExtract tool was developed in C# as an ap-

plication that extracts the following counters from the Mi-

crosoft™Windows operating system:

1) % Privileged Time - percentage of non-idle processor

spent executing code in privileged mode;

2) Handle Count - the number of handles currently opened

by a process;

3) IO Read Operations/sec - the rate of reads per second

for files, network and I/O devices;

4) IO Data Operations/sec - the rate of reads and writes

per second for files, network and I/O devices;

5) IO Write Operations/sec - the rate of writes per second

for files, network and I/O devices;

6) IO Other Operations/sec - the rate of other I/O opera-

tions for files, network and I/O devices;

7) IO Read Bytes/sec - the rate of bytes read per second

for files, network and I/O devices;

8) IO Write Bytes/sec - the rate of bytes issued to I/O

operations per second for files, network and I/O devices;

9) IO Data Bytes/sec - the rate of bytes read and wrote I/O

operations per second for files, network and I/O devices;

10) IO Other Bytes/sec - the rate of bytes used in control

operations per second for files, network and I/O devices;

11) Page Faults/sec - the rate of page faults per second

handled by the processor. It includes both type of page

faults: disk page faults and memory page faults;

12) Page File Bytes Peak - the maximum amount of virtual

memory, in bytes, reserved by the target process to be

used for paging files;

13) Page File Bytes - the current amount of virtual memory,

in bytes, reserved by the target process to be used for

paging files;

14) Pool Paged Bytes - number of bytes from the area of

system memory that can be written to the disk;

15) Pool Non-paged Bytes - number of bytes from the area

of system memory that can not be written to the disk;

16) Private Bytes - the size in bytes of the memory allocated

that can not be shared with other processes;

17) Priority Base - the current priority base for the target

process;

18) Thread Count - the number of threads that are running

in the target process;

19) Virtual Bytes Peak - the maximum size in bytes for the

virtual address space used by the target process;

20) Virtual Bytes - the size in bytes for the virtual address

space used by the target process;

21) Working Set Peak - the maximum size in bytes for the

working memory set of the target process;

22) Working Set - the size in bytes of the working memory

set for the target process;

23) Working Set Private - subset of working set reflecting

the un-shared amount of memory.

B. Malware and Benignware Runtime Environment

In the experiment we used a virtual machine on a cloud as

we have to execute the malware. Such an operation is definitely

harmful to run on the working computer.

An Elastic Computing Cloud (EC2) from Amazon Web

Services (AWS) [5] was be used for experimenting. We kept

the machine isolated from the Internet, only a specific IP was

allowed through the Internet firewall.

AWS is suitable for testing ransomware which executes

normally even without internet connection. In our experi-

ment an Internet connection is required as most malware

will not run without connection. So, VirtualBox [6] was

used to create a virtual machine. The machine has installed

Microsoft™Windows 7 with all required drivers and run-time

environments.

The time frame for the extraction was set at 30 seconds. The

reason for this decision is based on the fact that programs may

be used in different scenarios by different users. The startup

period is more likely to be the same for most usage scenarios.

The acquisition rate was set at 0.5 seconds in order to capture

decent length time series.

The PerfExtract tool may be executed using the following

syntax:

perfextract (-f <path to exe file> |
-p <pid of specific running program>)
[options] [-o <path to output folder>]
-c Track child processes

The -f option instructs the tool to run the executable image

file as an argument and record the performance counters. The

-p option instructs the tool to track the process by its identifier

and record its performance counters. The -c option instructs

the tool to track the child processes of the target process.

The -o option configures the output of the tool as a CSV file

containing the time series for each performance counter.

1) Malware Experiment: For the malware based experiment

we used 409 malware from VirusTotal [18]. We sampled the

performance counters at 0.5 seconds and we collected them

for a time frame of 30 seconds. We obtained a result of 60

rows. The launch of the PerfExtract tool was executed by

a Python script applying the -f option of the tool specifying

the file path of the malware executable image. Some malware

created child processes so we used the -c option to track their

children processes.

2) Benign Applications Experiment: For the benign appli-

cations experiment we used 288 benign (safe) applications.

The applications types are: browsers, IDEs, background Win-

dows processes etc. To launch the PerfExtract tool we
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used the -p option to refer to the PID (process identifier) of

the running benign applications.

3) Principal Component Analysis: On the resulted data we

perform two PCA analysis to determine the most important

counters of our approach. We used the Python SciKit-Learn

library in this sense. We concatenated the counter series from

all 409 malware and 288 benign processes and labeled them

as ”malign” or ”benign”. Next, we performed a standard

scaling on the input data using the StandardScaler() class

which performs a Z-score normalization. We set the number of

components to 2 to facilitate a bi-dimensional representation.

As a result we learned that the first principal component

contains 28.52% of the variance, while the second principal

component contains 17.79% of the variance. Together the two

components contain 46.31% of the information.
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Fig. 2. Principal component analysis for a 2 dimensional space

In Figure 2 we see the result of converting the 23 dimen-

sional space into 2 dimensional space. To be noticed on the

graph that the classes do not seem well separated from each

other.

[0.28524166 0.17793485 0.112478
0.08549196 0.06712712 0.04766427
0.04675847 0.03922873 0.03145469
0.02566163 0.02251158 0.02142496]

Fig. 3. Principal component analysis for 95% of the variance

On the other hand, if we perform a PCA analysis with

a target of 95% of the variance, we obtain 12 relevant

dimensions out of 23 (see Figure 3).

C. Data Preprocessing

The data is processed by several Python libraries such as

pandas, sklearn and numpy. Each data sample dimensionality

is 60 x 23, so after loading the whole data set we get a N x

60 x 23 numpy array. The data is normalized using min-max

normalization:

X =

X −Xmin

Xmax −Xmin

or Z-score normalization:

z =

x− µ

σ

where µ is the mean and σ is the standard deviation.

Finally, we split the data set into: train, validation and test

sets.

D. Deep Learning Classification Models

a) Residual Neural Network (ResNet): The network [19]

is composed of three residual blocks followed by a Global

Average Pooling (GAP) layer and a final Softmax layer.

A shortcut residual connection between convolutional layers

is used to enable the flow of the gradient directly through these

connections, which reduces the vanishing gradient effect and

makes training a deep neural network easier.

The classifier number of neurons is equal to the number of

classes in a data set. Each residual block is first composed

of three convolutions whose output is added to the residual

block’s input and then fed to the next layer.

The number of filters for all convolutions is fixed to 64, with

the ReLU (Rectified Linear Unit) activation function that is

preceded by a batch normalization operation. In each residual

block, the filter’s length is set to 8, 5 and 3.

The layers (except the final one) in the ResNet architec-

ture have an invariant number of parameters across different

datasets, thus we can pre-train a model on any dataset then

transfer and fine-tune it on a target dataset without modifying

the hidden layers of the model.

b) Convolutional Neural Network (CNN): We use a

normal Convolutional Neural Network [10] with 2 convolution

layers and 2 average pooling layers followed by a dense layer

with the size of classes’ count.

The convolution layers has a kernel size of 7 and filter sizes

of 6 and 12.

c) Time Le-Net (t-LeNet): This model [12] can be con-

sidered as a traditional CNN with two convolutions followed

by a fully connected (FC) layer and a final Softmax layer.

There are two main differences with the FCNs: (1) an FC

layer and (2) local maximum pooling operations. For both

convolutions, the ReLU activation function is used with a filter

length equal to 5.

For the first convolution, 5 filters are used and followed by

a max pooling of length equal to 2.

The second convolution uses 20 filters followed by a max

pooling of length equal to 4.

The convolutional blocks are followed by a non-linear fully

connected layer which is composed of 500 neurons, each one

using the ReLU activation function. Finally, we use a Softmax

classifier.

Due to the use of fully connected layers instead of a

Global Average Pooling layers this model doesn’t contain
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much invariant layers, thus the number of parameters needed

to be trained increases which limits the transferability of the

model to the first two convolutional blocks whose number of

parameters depends on the number and length of the chosen

filters.

This model adopts two different data augmentation tech-

niques: Window Slicing (WS) and Window Warping (WW)

to prevent overfitting especially for the relatively small time

series data sets. WW method squeezes or dilates the time

series, while WS method ensures that subsequences of the

same length are extracted for training the network.

d) Fully Convolutional Neural Network (FCN): FCNs

are mainly convolutional networks [19] that do not contain any

local pooling layers which means that the length of time series

is kept unchanged throughout the convolutions. The model was

first proposed in Wang et al. [19] for classifying univariate time

series datasets.

The model is composed of three convolutional blocks where

each block contains convolution followed by a batch normal-

ization and ReLU activation function. The result of the last

block if fed to a Global Average Pooling layer. Finally, a

softmax classifier is connected to the GAP layer’s output.

All convolutions has a stride of 1 and 0 padding to keep

the original length of the time series. The first convolution has

128 filters and filter length of 8, the second convolution has

256 filters with a filter length of 5, and the last convolution

has 128 filters with filter length of 3.

In addition, one of the main characteristics of this archi-

tecture is the replacement of the traditional final FC layer

with a GAP layer, which reduces drastically the number of

parameters in a neural network, while enabling the use of

the Class Activation Maps (CAM) that highlights which parts

of the input time series contributed the most to a certain

classification.

One of the advantages of this model is the invariance

in the number of parameters across time series of different

lengths which enables using transfer learning by pre-training

the model on a source dataset then fine-tuning it on the target

dataset.

e) Multi Layer Perceptron (MLP): The network [19]

contains 4 layers in total where each one is fully connected

to the output of its previous layer.

The final layer is a Softmax classifier, which is fully

connected to its previous layer’s output and contains a number

of neurons equal to the number of classes in the data set.

All three hidden FC layers are composed of 500 neurons

with ReLU as the activation function. Each layer is preceded

by a dropout operation with a rate equal to 0.1, 0.2, 0.2 and

0.3 for respectively the first, second, third and fourth layer.

Dropout is one form of regularization that helps in prevent-

ing overfitting. The dropout rate indicates the percentage of

neurons that are deactivated (set to zero) in a feed forward

pass during training.

This model doesn’t have any layer with an invariant number

of parameters which makes transfer learning impossible as the

number of parameters depends directly on the length of the

time series.

f) Encoder: Encoder [16] is a hybrid deep CNN whose

architecture is inspired by FCN with a main difference,

namely, the GAP layer is replaced with an attention layer.

Similarly to FCN, the first three layers are convolutional with

some relatively small modifications.

The first convolution is composed of 128 filters of length

5; the second convolution is composed of 256 filters of length

11; the third convolution is composed of 512 filters of length

21.

Each convolution is followed by an instance normalization

operation whose output is fed to the PReLU (Parametric

Rectified Linear Unit) activation function.

The output of PReLU is followed by a dropout operation

and a final max pooling of length 2.

The third convolutional layer is fed to an attention mecha-

nism that enables the network to learn which parts of the time

series are important for a certain classification.

Finally, a traditional Softmax classifier is fully connected to

the latter layer with a number of neurons equal to the number

of classes in the data set.

In addition to replacing the GAP layer with the attention

layer, Encoder differs from FCN in three main core changes:

(1) the PReLU activation function where an additional param-

eter is added for each filter to enable learning the slope of the

function, (2) the dropout regularization technique and (3) the

max pooling operation.

g) Multi-scale Convolutional Neural Network (MCNN):

The MCNN architecture [3] is very similar to a traditional

CNN model: with two convolutions (and maximum pooling)

followed by an FC layer and a final Softmax layer.

This approach is very complex with its heavy data pre-

processing step, Window Slicing (WS) method as a data

augmentation technique. WS slides a window over the input

time series and extract subsequences, thus training the network

on the extracted subsequences instead of the raw input time

series. Following the extraction of a subsequence from an input

time series using the WS method, a transformation stage is

used.

The output of each convolution in the first convolutional

stage is concatenated to form the input of the subsequent

convolutional layer. Following this second layer, an FC layer

is deployed with 256 neurons using the sigmoid activation

function. Finally, the usual softmax classifier is used with

a number of neurons equal to the number of classes in the

dataset.

h) Multi Channel Deep Convolutional Neural Network

(MCDCNN): The architecture [21] is mainly a traditional deep

CNN with one modification for MTS data: the convolutions

are applied independently (in parallel) on each dimension (or

channel) of the input MTS.

Each dimension for an input MTS will go through two

convolutional stages with 8 filters of length 5 with ReLU as

the activation function.
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Each convolution is followed by a max pooling operation

of length 2.

The output of the second convolutional stage for all dimen-

sions is concatenated over the channels axis and then fed to

an FC layer with 732 neurons with ReLU as the activation

function.

Finally, the Softmax classifier is used with a number of

neurons equal to the number of classes in the data set.

By using an FC layer before the softmax classifier, the

transferability of this network is limited to the first and second

convolutional layers.

i) Time Convolutional Neural Network (Time-CNN):

Time-CNN approach was originally proposed by Zhao et al.

(2017) for both univariate [20] and multivariate TSC.

The first characteristic of Time-CNN [20] is the use of the

mean squared error (MSE) instead of the traditional categorical

cross-entropy loss function. Another difference to traditional

CNNs is the use of a local average pooling operation instead

of local max pooling. In addition,a one convolution for all

the dimensions of a multivariate is applied for classification

task. The final classifier is fully connected directly to the

output of the second convolution, which removes completely

the Global Average Pooling layer without replacing it with a

fully connected non-linear layer.

The network is composed of two consecutive convolutional

layers with respectively 6 and 12 filters followed by a local

average pooling operation of length 3.

The convolutions adopt the sigmoid as the activation func-

tion.

The network’s output consists of an FC layer with a number

of neurons equal to the number of classes in the data set.

j) Inception Time: This classifier [8] is built of 2 residual

blocks, each block contains 3 inception modules instead of

fully connected layers.

Each block’s output is transferred using a shortcut layer

to the next block’s input to mitigate the vanishing gradient

problem by allowing a direct flow of the gradient.

After the residual blocks a Global Average Layer in used

and finally a fully connected layer with Softmax function and

a number of neurons equal to class the number of classes.

k) RNN: LSTM, GRU, and simple RNN classifiers im-

plemented by Shekoofeh Azizi [1]

IV. EXPERIMENTAL RESULTS

A. Software Performance Counters

In this section we will present the experimental results

obtained for each of the deep learning classification models.

By looking at Figures 6, 7, 11 and 10 we can see that these

models tend to be overfitting, especially t-LeNet (see Figure

11) model.

The MCNN model failed with 58% accuracy, 50% recall,

29% precision and 0.37 F1 score.

MLP (see Figure 9) and CNN (see Figure 4) models over-

fitted with 100% accuracy, and precision, recall, and a F1 score

of 1.
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Fig. 4. SPC CNN
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Fig. 5. SPC Encoder
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Fig. 6. SPC FCN

Encoder and MCDCNN (see Figure 8) models performed

well even with our small data set with a 98% accuracy, 97%

recall and precision, and 0.97 F1 score.
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Fig. 7. SPC Inception Time
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Fig. 8. SPC MCDCNN
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Fig. 9. SPC MLP

FCN, Inception and ResNet models’ performance can be

improved by using more complex data pre-processing tech-

niques and increasing the data set size.
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Fig. 10. SPC ResNet
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Fig. 11. SPC t-LeNet

Fig. 12. SPC 2 LSTM + Dense

In Figure 12 a RNN implementation consists of 2 LSTM

layers and 1 Dense layer was tested and resulted in 90%
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Fig. 13. SPC 2 GRU + Dense

Fig. 14. SPC 2 RNN + Dense

Fig. 15. SPC 1 RNN + Dense

validation accuracy.

TABLE I
PERFORMANCE OF SPCS BASED MODELS

Model Val Acc Precision Recall F1

CNN 0.99 0.991 0.989 0.99

Encoder 0.985 0.981 0.974 0.977

FCN 0.9 0.907 0.909 0.908

Inception 0.985 0.985 0.986 0.985

MCDCNN 0.981 0.979 0.979 0.979

MCNN 0.589 0.294 0.5 0.37

MLP 1 1 1 1

ResNet 0.976 0.973 0.975 0.974

t-LeNet 0.987 0.984 0.986 0.985

TWIESN 0.985 0.988 0.982 0.985

2 LSTM 0.901 0.891 0.953 0.921

2 GRU 0.929 0.913 0.976 0.943

2 RNN 1 1 1 1

1 RNN 0.985 1 0.976 0.988

In Figure 13 a RNN implementation consists of 2 GRU

layers and 1 Dense layer was tested and resulted in 93%

validation accuracy.

In Figure 14 a RNN implementation consists of 2 simple

RNN layers and 1 Dense layer was tested and resulted in 100%

validation accuracy.

In Figure 15 a RNN implementation consists of 1 simple

RNN layer and 1 Dense layer was tested and resulted in 98%

validation accuracy.

The overall performance of all the models definitely will be

improved after increasing the data set size.

In Table I are presented the SPC models performances.

B. Hardware Performance Counters

In this section we used a data from a different experiment

[22]. In this experiment the data have been collected using a

program called Savitor, which is used to extract AMD Hard-

ware Performance Counters readings. They ran 962 malware

and 962 benign software, HPCs were measured 32 times for

each program. Each program was kept running for a minute

and HPC readings were measured 32 times in equal intervals.
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Fig. 16. HPC CNN
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Fig. 17. HPC Encoder
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Fig. 18. HPC FCN
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Fig. 19. HPC Inception

In Figures 16, 17, 18, 19, 20, 21 are presented the HPC

models loss functions.

In Table II are presented the relevant HPC models perfor-
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Fig. 20. HPC MLP
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Fig. 21. HPC ResNet

mances.

V. DISCUSSION

The results are affected by 2 major factors, data samples

number and the similar processes in the operating system.

Apparently, our dataset consisting of 700 samples wasn’t

enough for some classifiers and led to overfitting.

The second problem is the interference of the malware

downloader and the fake children processes that create the

main malware process.

TABLE II
PERFORMANCE OF HPCS BASED MODELS

Model Val Acc Precision Recall F1

CNN 0.853 0.829 0.809 0.818

Encoder 0.959 0.957 0.0.959 0.958

MLP 0.672 0.687 0.687 0.687
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These processes are very similar in terms of counters’ data

to a lot of legitimate MS Windows services’ processes and

some other processes like auto updaters.

We can see that this problem affected FCN, t-LeNet,

ResNet, and FCN networks as they couldn’t differentiate

between these processes in the validation set.

This problem can be solved by using different approaches in

the counters extraction process like identifying the processes

that causes the problem and ignoring them so that we end up

only with the effective and real processes.

Also increasing the size and variety of the data set will

improve the overall performance of the model.

Despite these problems, a couple of models achieved

promising results.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented an experimental setup where

software and hardware performance counters time series were

extracted from a safe and a malware infected virtual machine

obtained from VirusTotal.

The performance counter time series were normalized and

were used to train 10/14 SPCs/HPCs deep learning classifica-

tion models.

For SPCs Encoder and MCDCNN models gave the best

results, while the other models tended to overfit.

For HPCs CNN and MLP gave the best results, while

Encoder gave best results till 50 epochs aftewards started to

overfit the training data.

As future work we intend to test more malware and to

increase the data set size to avoid overfitting problems.

A different malware categories will be tested to increase the

variation of the data set and try to mimic a real-time anti-virus.
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