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Abstract—This work proposes two parametric modeling strate-
gies for steady aerodynamic forces. We point out that airloads
are homogeneous and introduce a parametrization based on
spherical harmonics and a neural network. The parametrization
using spherical harmonics enables an analogue of frequency-
based truncation and a variation on the Singular Value De-
composition (SVD), constituting an orthogonal decomposition
of the modeled airloads. Since neural networks are universal
function approximators, the model based on this allows for
more flexible parametrizations, including actuations and model
inversions. Both parametrization strategies are showcased for
model identification and reduction purposes, highlighting their
strengths and weaknesses.

Index Terms—Airloads, Homogeneity, Spherical Harmonics,
Neural Network, SVD

I. INTRODUCTION

As in our previous work, [1], we seek a general function,
A, describing the input-output map from the generalized
relative velocities ν in R6 to the generalized aerodynamic
forces, τ , acting on a rigid body in R6, from here on called
airloads, see Fig. 1. As will become apparent later, this relation
also involves a handful of constants such as the speed of
sound c, the fluid density ρ, viscosity µ, and characteristic
length L. Extending our previous work [1], we propose a
parametrization that also allows for actuations u ∈ Rnu :

τ = A(ν,u, c, ρ, µ, L). (1)

The formulation in (1) is quite general and is often solved
using high-fidelity methods with significant computational
effort, such as Computational Fluid Dynamics (CFD) and
Blade Element Theory (BET). These approaches are often used
for modeling wind turbines [2], [3], helicopters [4] and small
aircraft [5]. The problem with this is that the computational
demand either renders the evaluation of the aerodynamic
model prohibitive to use in online control-oriented applications
or requires expensive computing platforms. This leads to the
necessity of finding parametrizations in terms of simpler, well-
known functions that capture the dominant effects of the high-
fidelity model with sufficient accuracy. Such parametrizations

τ3

τ1

τ2

τ6

τ4

τ5

ν3

ν1

ν2

ν6

ν4

ν5

A

(a) Rotating system

ν3

ν1

ν2

ν6
ν4

ν5

τ3
τ1

τ2

τ6
τ4

τ5
A

(b) Flying object

Fig. 1: Example illustration of the desired transformation from
generalized relative velocities, ν, to generalized forces, τ , for
two systems.

should ideally reflect the properties of the underlying system
and allow for model truncation. Under mild assumptions,
airloads exhibit homogeneity of degree two in the generalized
velocities, i.e., any scaling of ν results in a scaling of τ
by the same factor squared. We show this by utilizing the
Buckingham π theorem in Section II.

The homogeneity gives us the following advantages:
• The space spanned by ν is reduced from R6 to R5

through the removal of a known nonlinear scaling. This
restricts the input to S5.

• The normalized homogeneous inputs, ν̂, are in the range
[−1, 1] and can be directly used as inputs to neural
networks and other learning methods.

• It makes training more efficient and makes it easier for
neural networks to approximate the desired map, [6].

• It allows us to utilize an expansion defined in special
orthonormal functions defined on the unit hypersphere.

Some authors, such as [7], use a homogeneous parametriza-

1

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 3, NO. 1, JUNE 2023, pp. 1-11 

Cite as: F. Matras, D. P. Reinhardt, K. Gryte, and M. Dinhoff Pedersen, “Homogeneous Parametric Modeling of Airloads”, Syst. Theor. Control Comput. J., 

vol. 3, no. 1, pp. 1–11, Jun. 2023. 
DOI: 10.52846/stccj.2023.3.1.44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



tion, but the fact that the resulting model is homogeneous
is not stated explicitly. Other parametrizations such as those
presented in [8], [9], [10] and [11] do not enforce homogene-
ity, even though it is reasonable to assume that the modeled
systems exhibit this property.

The key contributions of this work are:

• Dimensional analysis proving that airloads are homoge-
neous.

• Two parametric modeling strategies, both relying on the
inherent property of homogeneity:

– A modeling strategy using a neural network with
weights and biases as parameters. This parameter-
ization allows for the inclusion of actuations.

– A modeling strategy based on a spherical harmonic
expansion, where the expansion coefficients serve as
parameters.

• Significant improvements in computational complexity
compared to existing high-fidelity solvers such as BET,
making the models suitable for simulation and model-
based control.

An overview of the parametrization process is shown in Fig.
2. The paper is structured accordingly, and both parametriza-
tion strategies are treated equally. Section II states the main
assumptions and demonstrates the homogeneity property, Fig.
2(b). The proposed parametrizations using a neural network,
Fig. 2(c), and spherical harmonics, Fig. 2(d), are shown in
Section III and Section IV, respectively. Two applications,
one for model reduction and one for model identification, are
showcased in Section V.

We note that the methodology is applicable to other systems
obeying homogeneity. Furthermore, the proposed method is
generally applicable to any input dimensionality. However, due
to the curse of dimensionality, special considerations must be
made. We showcase efficient models with inputs in R3 and
R5.

II. HOMOGENEITY OF AIRLOADS

This section demonstrates the homogeneity of airloads and
states the necessary assumptions for this property to hold.

A. Assumptions

Certain widely applicable assumptions have to be made in
order for the airloads function to be homogeneous, namely:

• Steady flow
• Subsonic motion
• Sufficiently large Reynolds number

In practice, this excludes micro aerial vehicles and aircraft
operating close to or above the speed of sound. Large systems
such as wind turbines comply with the assumptions. The same
holds for small aircraft [5].

B. Dimensional analysis

Let the vector of forces, the vector of torques, and the
generalized force-torque vector in R6 be denoted by

F ≜

Fx

Fy

Fz

 , M ≜

Mx

My

Mz

 , τ ≜

[
F
M

]
, (2)

respectively. The rotational and generalized velocities in R6

that generate the forces and torques are denoted by

v ≜

vxvy
vz

 , ω ≜

ωx

ωy

ωz

 , ν ≜

[
v
ω

]
. (3)

Working with generalized forces and velocities with consistent
units will be advantageous. To this end, we define a charac-
teristic length L and utilize it to form

KL ≜

[
I3x3 03×3

03x3 LI3×3

]
, τ̃ ≜KLτ , ν̃ ≜K−1

L ν, (4)

where I3×3 is the 3 × 3 identity matrix and 03x3 is a 3 × 3
matrix populated with zeros. After the multiplication by KL,
the elements of τ̃ and ν̃ will have the same units. Note that
with L = 1m these variables are numerically equivalent to τ
and ν.

We consider steady state airloads acting on a rigid body
where one can assume that τ at any given time solely depends
on ν, and possibly u at the same time, and a handful of
relevant constants. We only consider dimensionless actuations,
so they can be omitted here. Following the general dimension
analysis strategy as presented in [12], there must exist a
function such that

f(τ̃ , ν̃, ∥ν̃∥2, c, ρ, µ, L) = 0. (5)

This function can be transformed into a dimensionless form
by utilizing the Buckingham π theorem with cancellation
variables ∥ν̃∥2, ρ and L. Doing so yields

fΠ

(
τ̃

∥ν̃∥22L2ρ
,
∥ν̃∥2
c

,
µ

∥ν̃∥2Lρ
,
ν̃

∥ν̃∥2

)
= 0, (6)

where the third and fourth terms are the Mach and reciprocal
Reynolds number, respectively. Both dimensionless numbers
can be set to zero under the stated assumptions. Discarding
these terms, there must be a function Â such that

τ̃

∥ν̃∥22L2ρ
= Â

(
ν̃

∥ν̃∥2

)
= τ̂ , (7)

where τ̂ is a dimensionless generalized force coefficient. One
may therefore represent the generalized force as

τ̃ = ∥ν̃∥22L2ρÂ
(

ν̃

∥ν̃∥2

)
. (8)
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Fig. 2: Illustration of parametrization process. Generic function (a), homogeneity (b), neural network (c), and orthogonality
decomposition (d). ⊗ indicates multiplication and ⊕ represents addition. Note that the neural network (c) allows for actuations.

C. Homogeneity

Let the norm of ν̃ and its normalized version be given by

λ = ∥ν̃∥2, ν̂ =
ν̃

λ
. (9)

Inserting these into (8) and setting L = 1m we obtain

τ̃ = ρλ2Â(ν̂) = ρλ2τ̂ . (10)

This equation is part of a family of functions known as
homogeneous functions [13], more specifically, positively ho-
mogeneous functions with degree of homogeneity two. To
our knowledge, this property is neither widely known nor
used when parameterizing airloads. The homogeneity property
allows us to reduce the input space of ν, R6, to the unit
hypersphere S5. We then focus on modeling the nonlinear
function Â(ν̂), with inputs on the unit hypersphere, given that
the remaining terms of (10) are trivial. Fig. 2(b) shows a block
diagram representation of (10).

The preceding results generalize the equations for sectional
lift and drag of an airfoil, where the domain is only S1.
However, Â(ν̂) can represent everything from a small section
of an airfoil through the spatially integrated forces and torques
over an airfoil to the time-averaged forces and torques of a
rotating or flapping system.

It is worth mentioning that the dimensional analysis only
requires λ to have the unit of velocity, but its magnitude can
differ from the norm of the generalized velocities. In fact, any
uniform scaling of λ retains the same unit.

III. PARAMETRIC MODELING USING A NEURAL
NETWORK

A general approach for modeling unknown functions is to
use general function approximators. Neural networks are a
well-known type of such approximators. Even though they
are generally applicable, several criteria need to be fulfilled

N

N

N

N

N

Fig. 3: Illustration of two layer fully connected neural network
with three inputs and two outputs.

for them to perform well. One typical requirement is nor-
malization, i.e., the input and output should be normalized
to the range [−1, 1]. For the case of airloads, the scaling λ2

would be challenging for a neural network to learn since it has
no direct way of doing this. However, since the generalized
velocities are normalized before evaluating Â, as shown in
Fig 2, neural networks are suitable function approximators in
this framework.

Since neural networks are general approximators, mixing
homogeneous and nonhomogeneous inputs in the same model
is possible. This allows us to include actuated aerodynamic
surfaces and makes for a compact and robust parametrization.

Fig. 3 illustrates a small neural network with two layers. The
three inputs on the left are marked with dots, and each neuron,
N , contains weights of all inputs, biases, and an activation
function. NN abbreviates a parametrization based on a neural
network.

A. Model formulation

A neural network, for example, as illustrated in Fig. 3,
consists of several layers of neurons connected by weights.
Each layer can be mathematically formulated as

Nn(x) = f(W nx+ bn), (11)

where W n is a matrix of weights with the inputs along its
columns and output neurons along its rows. x is a vector
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of inputs, bn is a vector of biases and finally f(·) is an
activation function. The activation functions are selected based
on knowledge of the system, user preference, and desired
model behavior. More information about neural networks can
be found in the extensive literature covering this topic, such as
in [6]. The resulting model then recursively calls these layer
functions until the output is generated. The overall function of
a NN with N layers is given by

Â
([
ν̂
u

])
=N1(N2(...(NN

([
ν̂
u

])
))). (12)

B. Model parametrization

Parametrizing the model consists of several steps:
1) Sample point selection: Neural networks, in general,

need large amounts of data to train properly. The quantity
of data required depends highly on the problem at hand and
the design of the neural network. In some instances, Monte
Carlo sampling of the input space is a viable option, while
quadratures also might be a good idea if they are available.
The sample point selections should, if possible, be an iterative
process and tuned based on the training behavior of the neural
network. In addition, the data should be separated into a
training set and a test set so one can evaluate and stop training
at the correct time.

The homogeneity allows us to normalize the input and scale
the output accordingly. However, the output might still have a
large range. This can be combated by manually normalizing
the output data and then applying the reciprocal of this
normalization to the neural network’s output.

2) Airload evaluation: Evaluation of the airloads on the
sample points can be done in many ways. Numerical codes
such as CFD and BET can be used when a strictly compu-
tational methodology is preferred. At the same time, testing
in a wind tunnel might be advantageous when such facilities
are available. Let the subscript ·k denote · evaluated at sample
point k, such that τ k is the airload evaluated at νk and possibly
actuations uk.

3) Parameter estimation: All the weights Wn and biases b
of all the layers must be optimized. Since this quickly becomes
a large optimization problem, it is computationally challenging
to optimize a cost function. Instead, backpropagation of a loss
is used. The loss function is equivalent to the cost function in a
typical optimization problem, and we can use it to dictate how
we want the model to behave. Using a weighted mean squared
error loss function is a good start. By assigning weights Wk to
the samples, we can specify samples that are more important
to fit, effectively favoring a certain operating region over the
rest. Mathematically, we have

loss(νk,uk, τ k) =
1

k

K∑
k=1

Wk∥τ k −N(νk,uk)∥22. (13)

This loss is then used in a backpropagation algorithm to update
the weights and biases.

Fig. 4: Illustration of spherical harmonics up to order and
degree three. Blue is negative, orange is positive.

C. Computational performance

The computation time of a NN depends on the number
of input channels and the activation function. However, for
reference, we include that the NN in Fig. 3 with tanh(·) as
activation functions has a computation time of 320 ns. The
runtime test was performed using Julia [14] v. 1.8.3 running on
Windows 11 on an AMD Ryzen 9 4900HS laptop processor.

IV. PARAMETRIC MODELING USING SPHERICAL
HARMONICS

Hyperspherical harmonics are a natural choice for modeling
homogeneous functions of degree zero, which constitute a
homogeneous, complete, and orthogonal set of basis functions.
While the general methodology applies to hyperspherical
harmonics for any dimension, and these can be found [15],
it is only in the case of up to S2 that there exist suitable
computational algorithms in the literature. In the ongoing,
we shall confine the argument of the function to S2, where
the basis functions are known as spherical harmonics [16,
§14.30]. Consequently, we only consider three well-chosen
input dimensions, which is enough for numerous practical
applications such as wind turbines, airplanes, and multicopters.

Fig. 4 illustrates spherical harmonics up to order and degree
three. The figure also indicates the presence of sorting by
frequency content. Multiple algorithms for computing the
spherical harmonics exist, such as [17] and [18]. We made
a custom implementation, but this is beyond the scope of this
work and might be subject to a different publication. A model
based on spherical harmonics is from here on abbreviated by
SH.

A. Model formulation

The spherical harmonics are sorted by their order m and
degree l. However, for computational purposes, it will be
advantageous to sort them according to a one-dimensional
index j. Let f be a mapping such that j = f(l,m) and n
the total number of indexed harmonics.
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By using spherical harmonics as basis functions, it is
possible to expand the function Â in the following fashion

Â(ν̂) =



n∑
j=1

B1,jψj(ν̂)

n∑
j=1

B2,jψj(ν̂)

...
n∑

j=1

B6,jψj(ν̂)


= Bψ(ν̂), (14)

where ψ(ν̂) is a column vector containing the spherical
harmonic basis functions, ψj(ν̂), and B is a matrix where
each row represents appropriately chosen parameters for the
basis functions of the respective airload. Since the expansion
is complete, (14) converges as n goes to infinity. However, ex-
perience shows that truncation can be applied, which makes n
finite. This, in turn, allows us to formulate a finite-dimensional
parameter-matrix B, quantifying the airload function and en-
abling us to perform a Singular Value Decomposition (SVD).
By definition we have

B = UΣV⊤, (15)

which inserted into (14) gives

Â(ν̂) = UΣV⊤ψ(ν̂). (16)

Taking inspiration from the SVD structure, we define

Ψ(ν̂) = V⊤ψ(ν̂), (17)

where Ψ(ν̂) represents sorted superpositions of the basis
modes, super-modes for short. These super-modes are scaled
by Σ and weighted by U to generate the airloads.

The final formulation then becomes

Â(ν̂) = UΣΨ(ν̂) (18)

and is also shown schematically in Fig. 2(c). This SVD-
inspired formulation enables one to perform optimal truncation
if necessary.

1) Orthogonality: Spherical harmonics are orthogonal, i.e.∫
ψ(ν̂)ψ(ν̂)⊤dΩ = In×n (19)

where Ω is the solid angle. A similar approach for the super-
modes reveals that∫

Ψ(ν̂)Ψ(ν̂)⊤dΩ =

∫
V⊤ψ(ν̂)ψ(ν̂)⊤VdΩ =

V⊤
∫
ψ(ν̂)ψ(ν̂)⊤dΩV = V⊤In×nV = In×n,

(20)

which means that the SVD transformation preserves orthonor-
mality. Thus, Ψ(ν̂) consists of orthonormal basis functions.

B. Model parametrization

The SH was found by obtaining numerical airload data at
some points on S2 and optimizing the parameters. In general,
the procedure can be divided into the following steps:

1) Sample Point Selection: An efficient candidate for sam-
ple points on S2 is given by the Lebedev quadrature. The
order of the Lebedev quadrature only has to be twice that
of the highest spherical harmonic, [19]. The major limitation
of this method is that the highest order available is 131,
[20]. However, convergence is usually quick, and spherical
harmonics of order and degree lower than 30 suffice for the
examples presented in this work.

In addition to the sample points given by the Lebedev
quadrature, it is desirable to utilize a higher density of sample
points in the intended operating region. Let νk denote sample
points for k ∈ {1, 2, . . . ,K}.

2) Airload Evaluation: Evaluation of the airloads at the
sample points can be done the same way as for the NN. Again,
let the subscript ·k = ·|νk

denote · evaluated at sample point
νk, such that τ k is the airload evaluated at νk.

3) Parameter Estimation: The parameter matrix B is found
by solving the least squares problem with regularization,

min
B

K∑
k=1

Wk∥τ k − τ̃ k∥22+R⊤∥Bk∥1, (21)

where W and R are sample weighting and regularization
vectors, respectively.

The sample weights are used to prioritize the samples in a
user-specified way. At the same time, the regularization vector,
together with the regularization norm, controls the shape and
distribution of the model parameters, B. By tuning the reg-
ularization, one can also prescribe desired frequency content.
L1 regularization is used in (21) to enforce model sparsity
since the basis functions are not guaranteed to be linearly
independent on the evaluated sample points. Alternatively,
using L2 regularization gives similar performance but does
not inherit the computational advantage of a sparse model.

If only the Lebedev quadrature is used as sample points,
the regularization weight R can be set to zero. The Lebedev
quadrature also supplies sample weights W. The optimization
problem in (21) can be solved using industry-standard and
openly available numerical tools.

C. Computational Performance

The average computation time of one basis function is
∼ 4 ns, summing up to about 900 ns for a model evaluation
running on a single CPU core given a model of maximal order
and degree 15. The runtime tests were performed using the
same hardware and software as in Section III-C.

V. EXAMPLES

Two case studies are considered to showcase the methods’
versatility. Fig. 1 illustrates the two physical bodies and their
coordinate systems.

A. NREL 5MW Wind Turbine Rotor

The NREL 5 MW reference wind turbine described in [21]
will be used to illustrate the model reduction approach on
a rotating system. The airloads in the absence of induced
velocities are found using BET, which computes the full τ
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averaged over one rotation. The reader may consult [4] for
details about the BET algorithm.

The generalized velocities and forces are shown in Fig. 1a,
and the inputs were chosen to be the wind velocity parallel to
the axis of rotor rotation, ν3, the wind velocity perpendicular
to the axis of rotation in the upwind direction, ν1, as well as
the rotational velocity about the axis of rotation ν6.

1) Modeling Using a Neural Network: With this reduced
input set, the sample points were selected as evenly spaced
points on S2 using a Lebedev quadrature of order 101, which
resulted in 3470 sample points. Additionally, 900 sample
points in the operating region were selected and weighted 100
times stronger than the remaining sample points. The airloads
were computed for the sample points. Due to the reduced input
dimensions, we only have four nonzero outputs, namely Fx,
Fz , Mx, and Mz .

Fig. 5 shows the NN. There are three inputs, 40 neurons
in the first layer with a tanh(·) activation function, then two
layers of 80 neurons and one layer with 20 neurons each with
leakyRELU(·) activation functions follow, before the output
layer with four neurons and unit activation.

The NN was implemented in Flux [22] [23] using the
AdaBelief [24] backpropagation algorithm.

The additional samples in the nominal operating region and
higher weights are added to gain a higher fidelity in the area
where the model will be primarily used. For a wind turbine,
this region is characterized by the torque being in the same
direction as the rotational velocity and is highlighted in red
in Fig. 6a. Red represents negative torque, the only region in
which the torque is negative at negative rotational velocities.
This is the only region in which the rotor produces power.
The two big spheres on the bottom and the top have torques
opposing the direction of rotation, which means that they
consume energy. These would be the operating regions for
propellers that are used for propulsion.

Even though a neural network theoretically would be able to
parametrize a wind turbine rotor with the full ν, this would be
a challenging task due to the curse of dimensionality. Not only
for training the NN, but also for obtaining the data required
for training and testing.

2) Modeling Using Spherical Harmonics: A parametriza-
tion up to degree 30 is selected, and subsequently, a Lebedev
quadrature with degree 61 is chosen. Additionally, 300 sample
points were added in the nominal operating region.

The airloads were evaluated at the selected sample points,
and the optimization problem in (21) was solved using JuMP
[25] with the IPOPT solver [26].

As can be seen from the parameters in Fig. 7, the SH
exhibits a strong low-pass character. The high degree is needed
to accurately model the nominal operating region in which
the wind turbine generates power. As before, this area is
highlighted in red in Fig. 6b.

The super-modes defined in (17) are shown in Fig. 8. Fig. 8g
shows the U matrix and singular values Σ. It can be seen that
the forces and torques in and around the y-axis are zero to

v̂x
v̂z
ω̂z

F̂x

F̂z

M̂x

M̂z

Fig. 5: Illustration of NREL 5MW NN with inputs (squares),
nodes (blue circles), outputs (arrows), weights (line width),
and biases (red circles).
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Fig. 6: Average rotor torque during one rotation predicted
by NN and SH plotted in spherical coordinates with inputs
sampled on the unit sphere. Red is negative.
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Fig. 7: Illustration of NREL 5MW model parameters B with
respect to model degree l and order m.
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Fig. 8: Illustration of SVD decomposition of NREL 5MW
reference turbine airloads.

floating-point accuracy. This is because the horizontal flow
direction is along the x-axis.

3) Model Performance: Wind turbine performance is often
evaluated by examining the Tip Speed Ratio (TSR or λ) to
power coefficient (Cp) plot, as shown in Fig. 9. The plot
considers inflow orthogonal to the rotor disk, a slice of the
total parametrized input space S2 that also contains skewed
inflow. The induced velocities were computed as a function

2 4 6 8 10 12 14

Tip speed ratio, λ
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P
ow

er
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effi
ci

en
t,

C
p

BET

NN

SH

FAST

Fig. 9: Illustration of the power coefficient with respect to the
tip speed ratio, also known as a λ− Cp plot. The FAST data
was obtained from [28].

of the thrust and are an approximation to the relation given
in [27]. A total power loss of 5% was added to encompass
nonmodeled losses. It can be seen that both parametrizations
have similar and satisfactory performance.

An evaluation of the full SH takes 8.5 µs, about 300 times
faster than BET with similar accuracy. The NN evaluations
take 9.0 µs, which for all practical purposes, is the same as
for the SH.

B. Skywalker X8 Unmanned Aerial Vehicle

An example of model identification is performed for the
Skywalker X8 fixed-wing unmanned aerial vehicle using wind
tunnel experimental data gathered by [8].

1) Measurements and Preprocessing: Gryte et al. [8] con-
ducted a series of wind tunnel tests to collect measurements
of the generalized aerodynamic forces when the Skywalker
X8 airframe is subject to a relative linear velocity v ∈ R3

that is within the nominal operating conditions of this type of
fixed-wing UAV. The wind tunnel was operated to generate
a constant homogeneous airstream with a Reynolds number
in the range of the operating conditions of the Skywalker X8
from 2.5× 105 to 5× 105. The airframe was rotated to sweep
varying angles of attack and sideslip angles at different aileron
and elevator actuations. In addition to data in the operational
regime, data in the stall regime was obtained.

Even with thorough measurement procedures, a slight mis-
alignment between the body-fixed and measurement frame was
found in the data. This was corrected based on arguments to
exploit the symmetry concerning the longitudinal plane of the
airframe. Details of the calibration procedure will appear in a
separate paper [29].

The resulting samples and their angle of attack are show in
Fig. 10. Note that the sideslip angles and actuations are not
included in the plot for clarity.

2) Modeling Using a Neural Network: The relative linear
velocities, v, were selected as homogeneous inputs to the
model, in addition to the nonhomogeneous elevator and aileron
deflections in degrees. The output was τ .
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Fig. 10: Illustration of the measurement samples and fitted models.

In addition to preprocessing the data as outlined in the
previous section, the data was slightly filtered by smoothing
out the measurements. This was done to prevent the neural
network from trying to fit the noise and instead concentrate on
the underlying model behavior. To reduce the amount of data,
only every third sample from the pre-stall region was used,
and every fifth sample in the stall region. This effectively also
weighted the pre-stall region higher than the post-stall region.

An observed advantage of homogeneity is that a significant
reduction in required samples is achieved. The test data from
the Skywalker X8 contained samples taken at a wide range of
relative airflow velocities. However, when applying the nor-
malization based on homogeneity, we only need samples from
one airflow velocity since, after normalization, the airflow is
of unit length.

Fig. 11 shows the NN fitted to the measurement data. It
consists of five inputs, the first three are homogeneous inputs,
and the last two are nonhomogeneous inputs. Then there is
one layer with 11 neurons with tanh(·) activation function
before the output layer with six neurons and tanh(·) activation
function, each representing one element of τ . As before, the
width of the lines represents the weights, and the red circles the
biases. By analyzing the model, we can, for instance, see that
M̂x and M̂z have common behavior since they share the top
node in the first layer, which only depends on the normalized
velocities v̂x and v̂y . Furthermore, one can also verify that F̂z ,
M̂x, and M̂y have a term which depends only on v̂x.

The NN was again implemented in Flux [22] [23] using the
AdaBelief backpropagation algorithm [24].

Even though we only have training data for a limited range
of the input variables, the resulting parametrization has no such
limitations. This means that the parametrization guesses how
the model behaves when we sample it outside of the range
spanned by the training data. An example of this is shown

v̂x

v̂y

v̂z

ue

ua

F̂x

F̂y

F̂z

M̂x

M̂y

M̂z

Fig. 11: Illustration of Skywalker X8 NN with inputs (squares),
nodes (blue circles), outputs (arrows), weights (line width),
and biases (red circles).

in Fig. 12a, where the dots represent the measurements and
the transparent shape is the prediction of the NN. It might
look like the model is not fitting the blue (negative) samples
correctly, but this is just a flaw in the plotting. The sample
points are fitted well, as will become apparent in Fig. 10.

Testing a similar neural network without utilizing the ho-
mogeneity shows an increase in the mean squared error with
a factor of 10000, highlighting the effectiveness of properly
normalizing the input data.

3) Modeling Using Spherical Harmonics: The three dimen-
sions of linear velocities, v, were selected as inputs to the
SH, while the output was set to be τ . The coordinate system
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Fig. 13: Illustration of SVD decomposition for Skywalker X8
airloads.

is shown in Fig 1b. The data was limited to constant neutral
actuations, and some outliers and areas of high measurement
noise were removed. Every third sample of the remaining
dataset was used to speed up computations. JuMP [25] with
the Ipopt solver [26] was used to solve (21). The maximal
degree of the basis functions was set to 15.

Since the optimization problem is formulated based on
measurement data that only spans a small part of S2 it is
somewhat uncertain how the model should behave outside
this region. The weights for the regularization of the basis
functions in (21) are therefore weighted linearly by their
degree to enforce a low-frequency model. Additionally, the
normalized inputs scale up measurement noise significantly
when the input is close to zero. The sample errors were
weighted by their normalized input norms squared to combat
this.

Fig. 13 shows the resulting body-fixed model. The sparse
normalized parameters of the model are shown in Fig. 14.
Compared to the parameters in Fig. 7, the model convergence
is slower but still satisfactory.

Fig. 12b shows the SH for lift in body coordinates and the
corresponding measurements placed onto the sphere as dots.
It is seen that the fitted SH acts as a low-pass filter, averaging
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Fig. 14: Illustration of Skywalker X8 model parameters with
respect to model degree l and order m.

out the noisy measurements.
Fig. 13g illustrates the U-matrix of the SVD and the corre-

sponding normalized singular values. Most of the forces and
torques have one or two dominant components. As expected
from relatively smooth airload behavior, one can see that there
is an inversely proportional relationship between the singular
value and frequency content of the super-modes.

4) Model performance: The performances of the
parametrizations are evaluated in Fig. 10 by comparing
the estimates and the corresponding measurements. The SH
model is only plotted for samples with neutral actuations.
This is the same data as in Fig. 12b and Fig. 12a. The NN
model is able to include the nonhomogeneous inputs and is
therefore valid over the whole operating region, as indicated
by its predictions. One can verify that both parametrizations
fit the measurements well in both pre-and post-stall regimes
since stall was observed to start at angles of attack above
12 deg.

Evaluation of the full SH takes about 3.1 µs, while eval-
uation of the NN takes 1 µs. In this case, the simple NN is
faster than the SH, even though it includes the two actuations
and thus constitutes a full parametrization of the measurement
data.

VI. OPEN QUESTIONS AND FUTURE WORK

The presented work has focused on analyzing generalized
velocities on the unit sphere S2. Only the neural network
can include input on higher dimensional spheres at this stage.
However, it was found that the curse of dimensionality quickly
becomes a limitation for practical purposes. Further investigat-
ing this issue will be an exciting topic for future work. Ideally,
a general formulation for n dimensions would be found, but
an extension to R6 can be considered a complete model with
respect to ν.

Another area of future work with a significant impact
on system control would be to find a good approach for
model inversion. The model based on spherical harmonics
is limited to R3, which makes inversion challenging. Under
certain assumptions and limitations, a neural network can be
inverted directly, yielding the desired result. Unfortunately, this
approach was not found to be effective for general-purpose
modeling.
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Fig. 15 illustrates an encoder-decoder approach suggested
for future work. It is somewhat similar to an autoencoder,
except that the encoded value is specified to the desired
airloads. The dashed line in the figure represents the separation
between the encoder and decoder. Using the network on the
left of this line, one can compute the airloads given the
velocities and possibly actuations. In contrast, the network on
the right computes the inputs given the velocities and possibly
actuations. Both networks take normalized inputs, so while
the encoder normalizes with respect to the absolute velocity,
the decoder normalizes with respect to the absolute force. As
illustrated in the figure, the encoder and decoder are allowed to
be of different sizes since their underlying behavior is assumed
to be of varying complexity. This approach finds a bijective
parametrization to the data, even though the parametrized
phenomenon is not bijective. Care must therefore be taken,
and if the decoder cannot find a good fit, this might indicate
that the data does not stem from a bijective model. One of
the major limitations of this approach is that the data are
susceptible to measurement noise. Filtering goes a long way,
but the homogeneity significantly scales up the noise since it
requires the input always to be normalized. So if all inputs are
close to zero, any slight noise will be amplified significantly.

VII. CONCLUSION

This work analyzed and highlighted a little-used feature of
airloads; airloads are positively homogeneous with degree of
homogeneity two. A direct consequence of this property is
that it enables the factorization illustrated in Fig. 2. We are
then left with a simplified function with inputs sampled on a
unit sphere. Two approaches for parametrizing this function
have been presented, a neural network and a parametrization
using spherical harmonics. Two examples have demonstrated
the efficacy of our proposed strategies.

Using a linear combination of spherical harmonics basis
functions, one can parameterize any smooth airload function.
The model structure allows for an analog of SVD, which pro-
vides additional insight into the airload behavior and facilitates
truncation.

The generality of the neural network allows the inclusion of
higher dimensions and nonhomogeneous inputs. By analyzing
the resulting network, it is possible to obtain further insight
into the underlying behavior of the system.

Comparing the performances of the two parametrization
strategies, it seems they have similar accuracy and computa-

tional complexity when parametrizing complex systems, while
the neural network is superior for simpler systems.

Open questions have been stated, and future work has been
proposed.
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