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Abstract—This paper is about transfer function approaches for
brain-electrode interface modelling in the context of StereoElec-
troEncephaloGraphy, and their possible use in tissue classifica-
tion (between grey and white matter). Monopolar and bipolar
configurations are first reviewed, giving rise to possible non-
parametric and parametric identification methods, as well as
related possible classification results (for identical tissues and
distinct tissues at measurement points, respectively). A method
combining both approaches is then proposed, so as to end up
with a classification at each measurement point in any case.
The proposed methodology is implemented with clinical data
collected from a set of epileptic patients, confirming its interest
by providing more than 70% of accuracy in the obtained results.

Index Terms—SEEG, dynamical modelling, system identifica-
tion, classification, clinical data.

I. INTRODUCTION

Epilepsy is characterized by interruption of normal brain
functioning [10], and in front of focal drug-resistant cases,
resective surgery of the so-called epileptogenic zone (EZ) may
become necessary [3]. This requires appropriate identification
of the EZ, which can be done by non-invasive methods, or
by invasive ones for more difficult cases. StereoElectroEn-
cephaloGraphy (SEEG), where electrodes are inserted into the
patient’s brain, enters in the latter situation (as illustrated by
Figure 1).

In that case, distinguishing between grey and white matters
for the tissue where each electrode contact is located becomes
an important preliminary task: firstly because white matter
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Fig. 1: SEEG

not being epileptogenic [11], related contacts should be disre-
garded; secondly because in functional connectivity analysis,
stimulations in grey and white matters should not be the same
[31], as they produce different effects [25].

Classically, distinguishing between grey and white matter
is based on co-registration of structural Magnetic Resonance
Imaging (MRI) with Computed Tomography (CT) scans [9],
which can be limited by poor image quality, e.g. geometrical
distortion and poor contrast between grey and white matter.
This motivates for searching alternatives, directly using SEEG
signals. Very few studies have investigated such an approach: a
Bayesian classifier has been recently considered in [11], based
on features extracted from signals in a bipolar montage, while
we have started to explore system identification methods in
[18] and [21].

In [18], features were proposed on the basis of non-
parametric identification of frequency response between pairs
of consecutive contacts, providing a promising accuracy for
pairs in homogeneous matter, as compared to MRI classifica-
tion. In [21], a parametric model of the brain-electrode inter-
face was proposed based on triplets of consecutive contacts,
giving again classification results with a good accuracy, but
for triplets in heterogeneous matter.

Those results were obtained by considering previously se-
lected homogeneous pairs and heterogeneous triplets of con-
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tacts respectively. This means that none of the methods were
used for tissue classification at a given contact without any
prior knowledge about tissue homogeneity or heterogeneity
w.r.t. its neighbours.

In this context, the main goal of the present paper is to show
how transfer function approaches and related system identifi-
cation can be used for automatic brain tissue classification at
every single contact, directly using SEEG signals.

This combines our former communications [19], [20] en-
hancing both the modelling approach and the classification
one.

About modelling, we refer to that of the brain-electrode
interface which is involved. This topic has been considered in
various studies, more particularly in the context of Deep Brain
Stimulation (DBS), to quantify impedance changes. In [26],
[15], [14], or [30] for instance, a model has been identified
via electrode impedance spectroscopy (EIS) or impedance
tester, using signals recorded in animals chronically implanted
with electrodes. In such experiments, the impedance between
electrode contacts is identified by measuring both contact
voltages and the current in between. In the context of SEEG,
one can only find [4] where an impedance model was iden-
tified, but again using a known current - and with a simpler
structure. However, in usual SEEG conditions, the current is
not measured, and the only available information reduces to
voltage measurements at each contact.

An additional difficulty in such available studies is that most
models include derivation operators of non-integer order, in
so-called Constant Phase Elements (CPE). Non-integer order
(or fractional order) derivatives, which extend standard deriva-
tion [28], have been introduced in the modelling of various
physical systems for their improved memory properties [27].
They can also be found in biological systems (as in [22], [13],
[32] for instance), and were in particular successfully used in
our previous study of a phantom EEG measurement device
[1]. As in [21], we will here consider a non-integer order
model. Regarding classification, the main idea in this paper is
to combine approaches formerly developed for homogeneous
and heterogeneous cases in [18] and [21] respectively, so as
to obtain single contact classification.

The remainder of the paper is organized as follows: section
II first provides an overview on the modelling methodology,
and section III continues with corresponding identification
approaches, together with related classification results. On this
basis, section IV then proposes a single contact classification
scheme, and section V finally concludes the paper.

II. TRANSFER FUNCTION MODELLING FOR BRAIN TISSUE
CLASSIFICATION

A. Transfer function approach

Transfer function approach means defining input and output
variables. In the context of SEEG, the known information
is related to contact voltages, which can thus be used for
such definitions. The dynamics in between corresponds to
the brain-eletrode interface behaviour, which, as mentioned
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before, has been largely studied in the literature. In particular
it can be characterized by three elements, as depicted by Figure
2: a so-called peri-electrode layer (corresponding to tissue
encapsulation of the electrode formed by the brain reaction to
foreign bodies), a direct interface between each contact and
its surrounding physiological tissue, and the brain tissue itself.

Peri-electrode

Brain

Interface

Fig. 2: Physical representation of the brain-electrode interface
(with electrode contacts in black).

Each of these elements can be described by its impedance,
as emphasized by Figure 3: Z; for interface impedance, Z,, for
peri-electrode one, and Z; for brain one, for which previous
studies provide electrical models.

Electrode

Interface

Zy

Brain

Fig. 3: Impedance representation between contacts.

Notice that in this representation, interface and peri-
electrode impedances are identical for the two contacts. In
fact, no difference in interface or peri-electrode impedances
according to the nature of the surrounding brain tissue (grey
or white matter) has been reported in the literature. Hence we
can make the simplifying assumption that they are uniform all
along the electrode. On the other hand, it has been observed
that grey and white matters have different conductivities [4],
[24]. Therefore, these differences should have an impact on
the transfer function, which can in turn be used for tissue
classification.

The overall impedance between two consecutive contacts
(say Uy, Us) is summarized by Figure 4, and two approaches
can then be considered, either non-parametric, or parametric
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(following the terminology of [17] for instance).
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Fig. 4: Electrical impedance between two contacts.

B. Non-parametric approach

In a first approach, the transfer between measured contact
voltages can be considered in a standard monopolar configu-
ration, where each voltage is taken w.r.t. a common reference
contact (Ur.s) located away in white matter: for instance
Viref = Ut = Upef, Varep = U — U,ey, for two consecutive
contacts Uy, Us. This amounts to a transfer function as in
Figure 5 (with Vi,.s as the input, Vi,.s as the output, and
appropriate impedances Z12, Zircy).

U, U,
o0—— V4
12 O
A A
v
Iref N V2re f
3

Fig. 5: Monopolar montage: voltage measurements at two
consecutive contacts U; and U, are taken w.rt. a distant
contact Upy.

Following our former study [18], such a configuration can
give rise to direct frequency response identification between
measurements for pairs of consecutive SEEG contacts. Exam-
ples of identified models in such a way are given in Figure 6,
where mean magnitudes of Bode plots obtained for 19 patients
at rest, and a total of 486 pairs of contacts [18], are displayed.
It can be noticed that the magnitude profile looks like that of
a so-called lag-lead filter.

Mean Bodes for baseline

—grey
white

Magnitude (dB)

10’
Frequency (Hz)

Fig. 6: Mean frequency response of pairs of contacts in grey
matter (in black), and white matter (in cyan) (from [18]).
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C. Parametric approach

In order to enhance the transfer function approach, a para-
metric model can also be considered [21]: the idea is then to
rely on available electrical descriptions of Z;, Z,,, Z;. Here
it can be noticed that the impedance w.rt. Uyer (Zoper in
Figure 5) is not easily deduced, in particular because it may
vary according to the position of the considered contact. For
this reason, we now adopt a bipolar configuration, where
each voltage in a pair of consecutive contacts (U, Us) is re-
referenced w.r.t. the next adjacent one (denoted by U):

Vl = Ul - UO = Vlref - VOref

1
Vo= U2_U0:V2ref_VOref 1)

with Vorey := Uy — Uyey. This approach is summarized by
Figure 7 (where Z gathers Z; and Z),, and index 7 = 1, 2 for
Zy, refers to possible variations in brain impedance).

A HaH 2 e
z
N
v, 1T
Vl !E\‘ v,
Uo N

Tw

Fig. 7: Bipolar montage: voltage measurements at two consec-
utive contacts U; and Us are taken w.r.t. subsequent contact
Uop.

Representations of impedances Z;, Z,,, Z;, are recalled next:

1) Interface: One of the first contributions towards an
electrical representation for it can be found in [29]: the
proposed model is made of a double layer capacitance Cy,
representing the charge layers in the metal surface and the peri-
electrode one (as shown in Figure 2), in parallel with a charge
transfer resistance R, corresponding to charge leaks due elec-
trochemical reactions. It was then shown that to better account
for adsorption, surface roughness, and molecular forces in
the capacitive effect [6], capacitance Cy; can be replaced by
a capacitance with non-integer order model (Constant Phase
Element), of the following form:

1

 Qais®

for a constant ()4, and s the Laplace variable.

Here 0 < a < 1, represents the non-integer order, and the
inverse Laplace transform of s* corresponds to a fractional-
order time derivative (see e.g. [16]).

The corresponding interface impedance model Z; is illus-
trated by Figure 8.

2

ZCPEdl (S)
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Fig. 8: Interface impedance model.

2) Peri-electrode: The peri-electrode characterizes the en-
capsulation layer that appears around the implanted electrode
by reaction of nervous system [12]. In SEEG measurements,
electrodes are implanted long enough so that such a phe-
nomenon occurs [15]. An electrical circuit to represent it
can be found for instance in [26], [15], and [30]: it takes
the form of a resistor, representing the encapsulation tissue
by extracellular matrix proteins (R.;), in series with an RC
parallel circuit, capturing the physical properties of the glial
cell membrane that surrounds the electrode. The model can
again be improved by replacing the standard capacitor with a
CPE (Zcpg,,, as in equation (2), with a constant Q) [15],
still in parallel with a resistor (R.;). The resulting model for
the peri-electrode impedance is given in Figure 9.
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Fig. 9: Peri-Electrode impedance model.

3) Brain: The third element involved is the brain itself,
which can be represented by a simple resistor R,,.q charac-
terizing the resistance of the propagation medium between the
measuring contacts. Its illustration Z; reduces to that of Figure
10.

Fig. 10: Brain impedance model.

Notice that in addition to considering that Z; and Z;, are the
same ones at each contact, we will assume that non-integer
orders in both CPE’s involved in this model are identical,
consistently with results of [15] for instance.
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Finally, the transfer function between V; and V; is given by
the following:

Proposition 1: Considering electrical circuit of Figure 7,
with elements of Figures 8, 9, 10, the transfer function

L(V2)(s)/L(V1)(s) reads

L(Va)(s) B15%* + Bys® + Bs
LV1)(s)  A1s22 4+ Ags® + 1

G12(8) = 3)

where L(.) stands for the Laplace transform, and coefficients
B;’s, A;’s are given by:

lechRctRcl (RmedQ + 2Ren)

Bl B 4Rct + 4Rcl + 4Ren + Rmedl + Rmed2 (4)
By — (QaiRet + Qi Rer)(2Ren + Rinea)
4Rct + 4Rcl + 4Ren + Rmedl + Rmed2
n 2R Rt (Qer + Qar) 5)
ARct + 4Rc + 4Ren + Ried1 + Bimed2
B, = 2Ret + 2R + 2Repn + Rppeaz ©)
4Rct + 4Rcl + 4Ren + Rmedl + Rmed2
Al _ lechRctRcl(4Ren + Rmedl + RmedZ) (7)
ARct + 4Rc + 4Ren + Rined1 + Rmea2
Ay — AR Re(Qa + Qer)
4Rct + 4Rcl + 4Ren + Rmedl + Rmed2
(4Repn + Rmedr + Rimed2) (RetQai + RaQer) )
4Rct + 4Rcl + 4Ren + Rmedl + Rmed2
U

This can be established by simple impedance composition
and voltage divider law (see appendix for more details).

It can be noticed from equation (3) that in low frequencies
the gain becomes G12(s — 0) — Bs, while in high frequen-
cies we have G12(s — 00) — Bj/A;. Thus, this model can
represent either a lag-lead or a lead-lag behaviour, depending
on the values of By, Bs, and A;, with a plateau in low
frequencies and another one in high frequencies. This is illus-
trated by Figure 6 hereafter, where the magnitude of frequency
response is displayed for five versions of transfer function
(3), computed for different values of electrical components.
In those models, the non-integer order has been set to 0.8, as
a typical value in such biomedical systems [23], [2], and each
electrical parameter has been chosen randomly in the following
sets, consistently with results already presented in the literature
[29], [15], [21]: 1KQ < R, < 1MQ, 100pF < Cs < 100nF,
10nF < Qg < 15uF, 10nF < Qq < 15uF, 1kQ) < Ry <
200k, 1kQ2 < Ry < 50kQ, 1kQ) < R, < 10k, and
1EQ < Ryped < 30kS2.

Notice that a parametric model for the monopolar montage
can also be considered, but it appears to be less suitable to
represent the expected lag-lead behavior [19], and is thus
omitted here.
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Fig. 11: Examples of magnitude profiles in bode plots of five
different simulated models using the proposed circuit with five
different sets of electrical parameters.

III. IDENTIFICATION TOOLS AND BACKGROUND
MULTI-CONTACT RESULTS

A. Data and identification methodology

Let us consider here similar data as in our former works
[18], [21]: they come from actual SEEG recordings on
19 drug-resistant adult epileptic patients at the Hospital of
Grenoble-Alpes University, who consented to the re-use of
their data by research protocol F-TRACT (INSERM IRB 14-
140). Signals have been collected via a Micromed (Treviso,
Italy) SEEG/video system in monopolar montage, with sam-
pling frequency fs = 512 H z for 12 patients, and 1024 H z for
the other 9. A band-pass filter with frequency range between
0.1 and 200 Hz was used, and all data resampled at 256 H z
(see chapter 14 of [17]). Electrodes come from Dixi Medical
(Besancgon, France), and were implanted by 6 to 15 per patient.
Each of them contains 5 to 18 contacts, with a length equal
to 1.5 mm, a diameter of 0.8 mm, and contact inter-distance
equal to 3.5 mm (from center to center).

The tissue in which each contact is inserted in was classified
using MRI co-registration with CT-scan, following the proce-
dure of [7] and using FreeSurfer software. This classification
is used as the gold reference in this whole study.

Notice that for all our classifications, we use Linear Dis-
criminant Analysis (LDA).

Notice also that as in [18], [21], we only consider baseline
signals here, over 40 s in time, and recorded at rest [5].

On the basis of such data, and following the discussion
of section II, two different transfer function models can be
considered, giving rise to two different identification ap-
proaches: either frequency response identification, based on
pairs of contacts, or impedance-based (non-integer order)
parametric model, based on triplets of contacts. It appears
that the first approach allows to distinguish between grey and
white matters when the tissue looks homogeneous between
the two contacts of a considered pair (either Grey/Grey or
White/White). On the other hand, the second approach is
appropriate for tissue classification in case of heterogeneity
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(Grey/White or White/Grey). The corresponding identification
tools and results are reviewed hereafter.

B. Pairs of contacts with homogeneous tissues

In this approach, monopolar montage of Figure 5 is consid-
ered, with outermost contact taken as the input (V7,.y), and
innermost contact as the output (Va,..¢) for each contact pair,
as in Figure 12.

Output|

N

Fig. 12: Input and output contact ordering.

The frequency response is estimated via Spectral Analysis
(SPA) (see chapter 6 of [17]) as follows:

¢V27'ef Vires (w)

(ivlref (w)

©))

Gspale™) =

where &y, #Vires(w) is the Fourier transform of the win-
dowed cross-covariance between input and output signals, and
Dy, ;(w), the Fourier transform of the windowed covariance
of input signal Vi,.r, both being functions of pulsation w (or
of frequency f, via w = 27 f).
In polar form, this expression gives magnitude Msp A(w),
and phase ngSS pa(w) of the frequency response, as:
Gspa(e™) = Mgpa(w)e'@sral®) (10)
From the frequency response analysis of [18], four dis-
criminant features can be considered, defined from magnitude
MS pa(w), as mean squares (M S) and relative mean squares
(RMS), over two frequency ranges: FRy = [0 Hz, 30 Hz|
and FRy =[30Hz2,128 Hz] = [30 Hz, fs/2Hz] :

1 ~
MSpri N Z Mgpa(2mf;) (1)
fi€FR;
MSpri
RMS g 7 gf (12)

with ¢ = {1,2}, N; the number of samples within frequency
range F'R;, and M .S the mean square over the full frequency
range F'R; U F'R,.

Focusing on homogeneous pairs of contacts (either both in
grey matter, or both in white matter) according to MRI classi-
fication in our data set, and after elimination of outliers, 1058
pairs are left. Considering fifty scenarii of different training
data (90% of the data) and test data (10%), an accuracy of
72+ 3% could finally be obtained in the classification results.
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C. Triplets of contacts with heterogeneous tissues

In this approach, the idea is to exploit the physical inter-
pretation of the parametric model given in proposition 1, to
obtain other features for classification [21].

Taking indeed advantage of the resistance variation w.r.t.
the brain matter nature (grey or white), the primary idea is to
use the estimation of R,,.q parameter as a feature, for each
available triplet of contact.

Noting that model (3) is characterized by a vector of 5
parameters § = [By, Bo, B3, Ay, A3]T, while they depend on 7
electrical parameters, it is not possible to recover all electrical
ones from estimates of 6.

However, it appears from equations (7) and (4) that for a
given triplet of contacts, R,,cq1 and R,,.q2 can be compared
as follows:

Proposition 2: From relations (7) and (4) we have:

B
1 205 & Rueir > Rmea (13)
1
B
=05 © Rieaz = Rmear (14)
Ay
|
The proof is obvious (just noting that we have
& _ 2Ren + Rmed2
Al 4Ren + Rmedl + Rmed2 .

From this result, when the brain matter is different between

B,
then — becomes

all contacts in a triplet (Ryed2 7 Rimed1)s 1
1

a possible feature to distinguish between them.

Estimates for By and A; can be obtained by parametric
identification of model (3). Re-written in time-domain, it
reads:

A (5

dt

iy

Following former discussions of [8], [33], [2] on non-integer
order identification via regression, the non-integer order time
derivative of a signal V' can be approximated from its discrete
values V(k) at times kh (with sampling time h) for N
samples, by Griinwald-Letnikov method, as follows [28]:

)m Va(t) + As (i)a Va(t) + Va(t) =
d

2« d «
dt) V1(t) + By (dt) Vl(t) + B3V1(t) (15)

(@) o= Cre-a v

with ( ) the generalised Newton binomial.
Equation (15) is then turned into a linear regression [21]:

Va(k, 0a) = ¢" (k)0a (17
where Va(k, 0,) represents our model output.
In this regression, the parameter vector is:
h20z
04 = (18)

00—
h2% + 6, + 65he
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where 0; is the ith component of 6,
and the regressor is:

o(k) [an(%)(k% (V1)( ): Vi(k), Faa(V2)(k — 1),
Fo(V2)(k — 1) (19)

where F.,(.) refers to a filter operator, related to some non-
integer order vy, and defined from delay operator ¢ by:

1 & ¥
F= g 0 (7)o
The identification finally becomes a minimisation problem:
) 1
ming, & ;(Vz(k) —

where V3 (k) is the actual measurement of V5 at time kh.

In this formulation, additional constraints can be added, so
as to respect positivity of parameters typically.

From estimate éd for 6,4, estimates for parameters of 6 can
obviously be obtained, and in turn, feature B;/A; can be
computed.

(20)

Va(k,04))? 1)

With the considered data, two different heterogeneous
groups can be defined: ”Grey/White”, for a triplet of contacts
with more grey matter between the first two contacts than
between the last two ones, and ”White/Grey”, for the converse.
In that case, 136 triplets are obtained with our data, and using
scenarii with 75 % of the data for training, and the remaining
25 % for validation, classification results were obtained with
an accuracy of 73 + 6% [21].

IV. SINGLE CONTACT CLASSIFICATION RESULTS

Since in the former section, non-parametric and parametric
identification methods were only considered for homogeneous
and heterogeneous groups respectively (pre-selected according
to MRI classification), and for contact pairs and triplets
respectively, the purpose here is to discuss how they can be
enhanced so as to end up with an automatic classification for
single contact, and with no prior knowledge.

In our data, 356 triplets of contacts are now used, corre-
sponding to those for which parametric models were validated
in [21]. For each triplet, the non-parametric method is applied
for the first two contacts, forming 356 pairs.

A. Classification results with separate methods

Let us first discuss how previous identification approaches
perform for the classification of a single contact, without
any prior homogeneity or heterogeneity information. This
means using pairs of contacts with non-parametric method,
and triplets with parametric one as before, but now with the
goal of identifying tissue for the first contact (of a triplet, or a
corresponding pair). Classifying labels then reduce to "Grey”,
and "White”, as in our gold standard MRI classification. Two
LDA classifiers are trained, either considering non-parametric
features (11)-(12) and only homogeneous pairs according
to the MRI (145 ’Grey/Grey”, and 124 “White/White”), or
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considering parametric feature (B;/A;, as emphasized in
proposition 2) and only heterogeneous triplets according to
the MRI (73 ”Grey/White”, and 63 ”White/Grey”).

Notice that an heterogeneous triplet can be related to a
homogeneous pair, if the first two contacts of the triplet are in
the same tissue, and the third one in a different tissue. For our
pairs of contacts, 76% are in homogeneous tissue, and 24% in
heterogeneous one. For the triplet, 56% are in homogeneous
tissue, 38% in heterogeneous one, and 6% are in mixed tissue,
where the intermediate contact is in a tissue different from
the one of the other two contacts (tissue orders of the form
Grey/White/Grey or White/Grey/White).

Classifier training (for first contacts) was done with 75 %
of the data, and validated with the remaining 25 %. Trained
classifiers were applied to pairs and triplets of contacts in
homogeneous and heterogeneous groups first separately, and
then to all 356 first contacts involved in the study. Accuracies
of classification results obtained for each of those cases are
summarized in Table 1.

TABLE I: Accuracies of Identification-based LDA Classifiers
for Single Contacts (for a set of 356 contacts)

Accuracy
Only
heterogeneous
55% (24% of pairs)
73% (38% of triplets)

LDA Classifier Only

homogeneous
72% (76% of pairs)
60% (56% of triplets)

All
contacts
68%
65%

Non-parametric
Parametric

As expected, the non-parametric classifier performs better
for homogeneous groups, and the parametric classifier is
better for heterogeneous ones. One can also notice that the
parametric classifier gives a higher accuracy for homogeneous
group separation than the non-parametric classifier for hetero-
geneous group separation. However, when looking at overall
accuracy considering all groups, the non-parametric classifier
outperforms the parametric one. This can be explained by the
fact that 76% of contact pairs are in homogeneous tissues.

B. Combination of Both Identification Methods

From the results of previous subsection, each identification-
based classification method classifies well the label of the first
contact for different types of tissue combinations. Here, the
idea is to combine information provided by both classifiers,
using the posterior probabilities of each first contact to be in
the ”Grey” group, according to each classifier, non-parametric
(np) or parametric (p).

The classifier will be mentioned by an index ¢ € {np, p},
and features for a contact = in ”Grey” group assumed to satisfy
a Gaussian distribution density of the form:

1

P.(alG) = :

1
——ex
(@n)Sa)i (

(22)
where d is the number of features (d =4 if c=np,andd =1
if ¢ = p), while X and ug refer to covariance and mean of
the features of group “Grey” respectively.

Denoting by Py the prior probability of the “Grey”
class (resp. Py for "White” class) and defining a normal-
ization coefficient by the following law of total probabil-

(w-—MG>Zc1@*—MG)T)
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ity P(2) := > yc(qwy Fe(x|k) Py, the normalised posterior
probability is obtained by Bayes rule as:
P.(z|G)Pg

PCl) = =0

(23)
The values of P.(G|z) indicate how likely the contact  is to
be part of the "Grey” group, given its feature values. Each set
of 356 pairs and 356 triplets is assigned a value of normalised
posterior probability P,,(G|x) and P,(G|x) corresponding to
the non-parametric and parametric classifiers respectively.
This information can then be used to first identify contacts
’badly’ classified, and then classify the remaining ones:

1) Bad contacts elimination: Contacts with a high proba-
bility of being badly classified can indeed be eliminated, by
comparing labels provided by each classifier.

Over the 356 combinations of contacts, the elements ob-
taining same labels when using both non-parametric and
parametric classifiers can be considered as correctly classified
(72%). However, this does not mean that all of the remaining
28% should be considered as “’badly” classified. In fact, for
the cases where the obtained probability is around 0.5 (say
0.4 < P.(G|z) < 0.6) with either non-parametric or paramet-
ric classifier, the chances for the contact to be in grey or white
matter are quite similar according to this classifier. Hence the
idea in such cases is to rather refer to the other classifier to
make a decision, and there is no error of classification. Thus,
the only classifications that can be considered as “bad” when
comparing labels obtained by the two classifiers are those for
which when one of the normalised posterior probabilities is
high the other one is low. With that, only 14% of contacts can
be considered as “badly” classified, leaving 305 contacts to be
analysed in the following step.

A summarizing picture of this bad classification identifi-
cation based on normalised posterior probabilities is given
in Figure 13, together with the likely triplet compositions
expected for each combination of probabilities.

Po(G|X)
099 — o == = = - o _ _ _ _
06--F—-~-——-——~— = d7 " L— -
ood White ! 2°°
G € emwie!
W/W/W | W/G/W |
04— —F— === — =7~ =~ e it - -

Good 1 Good !
White :Vthe:
W/W/G I W/G/G |

|
0.4

0.6

Fig. 13: Illustration of the "Bad” contact identification process
based on normalised posterior probabilities.
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2) Combined classification: After elimination of badly
classified contacts, combination of information delivered by
each classifier can be considered for remaining contacts. To
that end, an average normalised posterior probability is defined
from the normalised posterior probabilities of each classifier
(equation (23)):

P(G|z) = (24)

Py(Gl2) + Py(Gle)
2

On this basis, we adopt the following classification:

o if P(G|z) > 0.5, the contact is considered to be in
”Grey” matter,

o if P(G|z) < 0.5 the contact is considered to be in
”White” matter.

With this approach, applied to the 305 contacts previously
selected, the obtained accuracy w.r.t. MRI classification is
72%.

In order to compare this combined classification with per-
formances by each separate classifier, pairs and triplets in the
same 305 selected contacts are used. The results are shown
in Figurel4, presenting the percentage of correctly classified
first contacts by combined classification in comparison to the
percentage of correctly classified first contacts by each of
the classifiers separately, in pairs and triplets for the non-
parametric and parametric cases respectively.

%é)lscorrect\y classified first contact according to MRI pair classification

Il Non-parametric classification|
B Combined classification I

o
3

o
=)

o
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o
w
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o
o

o
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(a) Non-parametric classifier
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[ Combined classification |4

o
©

e o
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% of correctly classified first contact
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Fig. 14: Comparison of correctly classified first contacts with
(a) non-parametric and combined classifiers, and (b) paramet-
ric and combined classifiers (G means Grey and W White).

Table II also displays the overall accuracies for each clas-
sifier with all 305 contacts.

TABLE II: Accuracies for Single Contact Classification for
Each Classifier approach with 305 Contacts

Accuracy
Combined 72%
Non-parametric 72%
Parametric 66%

From those results, it can be noticed that the combined
classifier has a performance very similar to that of non-
parametric classifier. With the elimination of “Bad” contacts,
the performance of individual classifiers was enhanced when
compared to Table 1.

In the upper part of Figure 14, it can be seen that even
if performances are pretty similar, the combined classification
does a bit better than the non-parametric one for classification
of ”Grey/White” cases.

On the other hand, in the lower part, it appears that this
combined classifier has a better performance than the paramet-
ric one for all cases, except configurations ~Grey/White/Grey”
and ”White/Grey/White”. The accuracy can even reach almost
95% for the "G/G/W” case, and Table II shows an average
improvement from 66% for the parametric classifier by itself,
to 72% with the combined one.

V. CONCLUSIONS

In this paper, two transfer function modelling approaches for
dynamic representation of brain-electrode interface in SEEG
have been reviewed, with the purpose of using them for
brain tissue classification (grey or white matter) around each
electrode contact. A first one is based on pairs of contacts and
frequency-based non-parametric identification, showing good
classification results for contacts in homogeneous matter. On
the other hand, the second approach is based on triplets of con-
tacts and impedance-based parametric identification, providing
good classification results for contacts in heterogeneous matter.
On this basis, the extension of those separate methods to a
combined framework allowing for tissue classification of sin-
gle contacts and with no homogeneous or heterogeneous prior
information has been presented, in the end giving classification
results with accuracies larger than 70%. This is promising, and
future studies will be dedicated to accuracy improvements and
data-based tests enlargement.

APPENDIX

Proof of proposition 1:

Considering the structure of circuit in Figure 7, with Z;, =
Ryneq as in Figure 10, let us set Zy, := Z + Ryear + £ for
k =1,2. Then it easily follows (voltage divider):

(25)

27
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On the other hand, with notations of Figures 8 and 9, the
definition of Z yields:

Z=27+2Z, (26)
where
7 _ _ZoppaRa
’ ZCPJ%?Z + Rt (27)
" 1+ RaQus®
and
7 ZopEcdRa
P
ZCP%Z + Rey (28)
- " T T RuQuse 1 + RleclSa
Hence Z = N/D with:
N = Ren(l + Rleclsa)(]- + Rcthlsa)
+Rcl(1 + RcthlSa) + Rct(l + RleclSa) (29)
D = (14+RuQus*)(1+ RyQais™)
Then:
Zo 2N + Ryeq2 D
= (30)
Zl + Z2 AN + (Rm,edl + RmedQ)D

By expanding denominator expression, we get its constant
term as 4(Rei+ Rei+ Ren) + Rined1 + Rimedz, and normalizing
by it all coefficients in expanded numerator and denominator,
coefficients B;’s and A;’s of proposition 1 are obtained.
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