
Analysis of Industrial Sensor Data Using Statistical 
and Regression Methods 

 

Katalin FERENCZ  
Doctoral School of Applied Informatics 

and Applied Mathematics - Óbuda 
University, Budapest, Hungary 

Faculty of Technical and Human 
Sciences, Târgu Mureș, Romania - 
Sapientia Hungarian University of 

Transylvania 
ferenczkatalin@stud.uni-obuda.hu 

ferenczkatalin@ms.sapientia.ro 

József DOMOKOS 
Faculty of Technical and Human 

Sciences, Târgu Mureș 
Sapientia Hungarian University of 

Transylvania 
Târgu Mureș, Romania 
domi@ms.sapientia.ro 

Levente KOVÁCS 
John Von Neumann Faculty of 

Informatics 
Óbuda University 

Budapest, Hungary 
kovacs@uni-obuda.hu 

Abstract— Today's industrial landscape is primarily driven 
by rapid and effective data processing and evaluation. 
Consequently, industries should devote considerable attention 
and resources towards real-time examination of the large data 
sets acquired, enabling timely extraction of vital information for 
outlier detection, fake data identification, and predictive 
analysis to mitigate unforeseen expenses. This rigorous process 
of data analysis necessitates the employment of a diverse set of 
algorithms that align with the specific objectives, spanning a 
wide spectrum of potential solutions. In this manuscript, we 
demonstrate how Apache Spark's unified engine can be 
harnessed for conducting statistical analysis of time series data, 
thereby expediting industrial data analysis processes. 
Furthermore, we examine and implement both linear and 
random forest regression models within the context of the 
demonstrated use case. 

Keywords— IoT, IIoT, regression models, algorithms, 
predictions, outlier detections, Apache Spark 

I. INTRODUCTION 
The rapid development of the industry and IT (Information 

Technology) and the constant technological renewal provide 
more and more opportunities for companies operating in the 
industrial sector. The Internet of Things (IoT) is becoming 
more widespread in industry than the Industrial Internet of 
Things (IIoT). As a result, the integration of various sensors 
and data sources increases exponentially the amount of data 
that can be extracted, which usually traditional algorithms are 
not able to process optimally in real time. Thus, there is a need 
to use algorithms that also use intelligent machine learning 
and artificial intelligence. This conducted us to expand our 
data processing systems with capabilities that provide 
valuable information based on historical and real-time data to 
improve current performance, make estimates, and detect 
underlying trends and correlations. 

Industry, especially the manufacturing industry, is a data-
rich environment where monitoring of assets and processes 
continuously generates data that is only partially used by many 
manufacturers. Manufacturers operate high-cost local or cloud 
infrastructure to store this large and ever-expanding amount 
of data. Intelligent data analysis as well as the use of real-time 
monitoring systems can provide a solution to create value 
from the various data stored. An important goal of the ongoing 
4th Industrial Revolution, or Industry 4.0, is to create value, 

generate relevant knowledge, and even turn it into a business 
advantage for manufacturers, by interpreting the data 
collected. Predictive maintenance of industrial equipment has 
become a defining aspect of Industry 4.0 and is a critical area 
today. As a result of conventional reactive maintenance, 
where system repairs are performed after the fault has been 
detected, the whole process shut down is compulsory and the 
repair costs are high. Based on the acquired and analyzed data, 
predictive maintenance is possible, thus enabling the 
prevention of equipment failure and thus cost savings. 

Due to the pace of development of industry and 
technology, the continuous monitoring and maintenance of 
systems and machines has become important, and the 
information obtained from them allows for fault diagnosis. 
Based on this, preventive or predictive strategies can be 
developed and applied, thus reducing the maintenance costs of 
machines in the long run and increasing the service life of the 
equipment [1]. At the same time, unplanned production 
downtime can be avoided. In order to achieve the right result 
or extract useful information from the collected data, 
calculations must be performed, algorithms must be run, 
decision-making mechanisms must be applied, and the 
decision made must be executed with the best possible 
response time and limited resources. However, it is also 
important to keep in mind that the time and resources available 
may change during the operation of the system. 

Today, the industry is already trying to use various 
diagnostic and monitoring tools that supervises industrial 
processes, detect faults, deviations from a defined normal 
mode of operation, and in these cases different strategies are 
developed to signal or manage different situations. To use the 
appropriate diagnostic system, a faultless system model and 
a management system model describing typical faults are 
created and then used for fault diagnosis [2]. A large amount 
of data is collected and stored during the monitoring of the 
state of the system and the supervision of its processes. The 
analysis and interpretation of this data facilitates the above-
mentioned processes. Among the simplest methods is the 
preparation of statistical analyses, which provide valuable 
status information beyond the knowledge of the system 
actuators. Furthermore, the application of various models 
(such as regression models) on the data set can provide very 
valuable information for predictions and decision-making. 
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This manuscript expands upon our preliminary findings, 
initially presented at the 2022 IEEE 16th International 
Symposium on Applied Computational Intelligence and 
Informatics (SACI), “A statistical approach to time series 
sensor data evaluation using Apache Spark modules” [3]. 
Herein, we provide a more comprehensive methodology, 
augmented data set, and an extended review and analysis, 
thereby offering a more in-depth understanding of the subject 
matter. 

II. REAL-TIME SYSTEMS AND REGRESSION MODELS 
Each of the physical processes used in the industry takes 

place at a given time, tied to time constraints that determine 
the activity and nature of the entire system. Thus, time appears 
as a constraint in the interpretation of systems. These systems, 
which take time into account as a key factor, are called real-
time systems. Real-time systems maintain constant contact 
with their environment, thus obtaining information about the 
state of the environment. The information is collected with the 
help of sensors, and then it is transformed into useful 
knowledge by algorithms, and based on different decision-
making mechanisms, various intervening actuators and 
executors perform actions in order to achieve the desired state 
and result [4][5][6]. 

There are several decision-making mechanisms described 
in the literature [5]: 

• reactive agents: the execution of a basic action 
depending on the state of the outside world, based on a 
predetermined strategy;  

• thinking agents: calculation, analysis, decision are 
needed to select the right action; planning agents: 
makes an estimate of the future state of the 
environment and the impact of actions. 

Regression models find their greatest utility in contexts 
where the dependent variable under study is continuous, 
encompassing a multitude of potential values. Such instances 
might include temperature measurements, among other 
continuous data types. The primary objective of using 
regression models in these contexts is to determine the degree 
of influence of the explanatory variable against the dependent 
variable [7]. 

These models afford the capacity to manage numerous 
variables concurrently, thereby facilitating exploration of the 
interrelationships among these variables. Furthermore, 
regression models demonstrate substantial efficacy in the 
analysis of time series data. They also furnish the means to 
generate predictions  upon the extant data [8]. 

There are several regression models that cover different 
application areas, the most commonly used regression models 
are: 

• Linear Regression: it can be used to model the linear 
relationships between the dependent variable and the 
independent variable(s), the effect of each variable can 
be clearly illustrated from the model [9]; 

• Polynomial Regression: can be used if there is a 
nonlinear relationship between the independent 
variable and the dependent variable; 

• Logistic Regression: used for binary target-dependent 
variables, models the logarithm of the odds as a 
function of the independent variables; 

• Support Vector Regression: it is based on the basic 
principle of the support vector machine and effectively 
handles non-linear relationships and high-dimensional 
data; 

• Random Forest Regression: able to handle non-linear 
relationships and complex interactions between 
independent variables, for which it combines many 
decision trees to build the final model [10]. 

As part of our research, we explored the implementation of 
both linear and random forest regression models in more 
detail, and we have interpreted their results during our use 
case. Also, we show that regression models are suitable for 
real time systems. 

III. INDUSTRIAL APPLICATION OF INTELLIGENT 
ALGORITHMS 

In the intelligent manufacturing environment, the 
installation of various intelligent sensor and data acquisition 
units can collect large amounts of data (event and status 
information) about the operation of the system and the nature 
of the processes. Building on this data, it will be possible to 
use several frameworks in the industry, especially in the 
manufacturing environment, that allow for conscious 
statistical data analysis and evaluation based on real-time and 
historical data, as well as for dynamic response and real-time 
optimization of production. These analyzes provide predictive 
data that can be used to create self-adjusting mechanisms, 
dynamically changeable models, and alarm systems to help 
keep the production system running normally, or to support 
the rapid resumption of a critical outage, or even prevent it 
from occurring. An example of such a system is the IDARTS 
(Intelligent Data Analysis and Real-Time Supervision) 
framework presented by Ricardo Silva Peres in his study [11]. 
The Intelligent Predictive Maintenance (IPdM) System [12] 
presented by K. Wang also presents an industry-based system 
for processing real-time information and assisting in 
diagnostics and prognosis based on it. The distributed 
framework presented by Zhiqiang Ge [13] examines plant-
wide industrial processes and then forecasts and diagnoses key 
performance indices. In his study Dazhong Wu [14] presents 
a fog calculation system that uses cloud-based machine 
learning algorithms that play an important role in process 
observation and predictive analysis during manufacturing 
processes. 

In this article [15], L. Magadán presents a low-cost, self-
implemented real-time monitoring system that meets the 
requirements of Industry 4.0. The article presents a prototype 
of IIoT that uses low-cost sensors and gateways, combining 
various analyzes and fog calculations to support the 
implementation of predictive maintenance. The data required 
for implementation were stored in the cloud and a predictive 
model based on machine learning was used to achieve the 
desired result.  

In our previously published papers presenting an earlier 
phase of our research [16], we have introduced the 
architecture of our data collection and processing system. This 
paper focuses on an expansion of the data processing 
component of our system, which we have recently developed 
and will be presented herein.  
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IV. APPLICATION OF APACHE SPARK 
Nowadays, the industry is most concerned with how it can 

meet the expectations set for Industry 4.0, keep pace with the 
rapid development of technology, and achieve cost-effective 
day-to-day operations. To do this, however, industry must also 
adapt to new technologies and take advantage of the 
opportunities these offer. 

In the following, we will present our system that also helps 
in industrial fast data analysis and detection of outliers in time-
series of sensor values. 

We are working on a prototype system that will allow easy 
storage of data collected from a large number of different 
types of smart devices in the Apache Cassandra open-source 
distributed NoSQL database management system [17]. 
Building on this, Apache Spark, also using an open-source 
data processing system, will allow the user to take advantage 
of Spark's ability to perform instant data analysis on demand. 
Apache Spark provides several options for data analysis:  

• Spark Streaming (Near Real-Time) – scalable and 
fault-tolerant stream processing system; 

• SparkSQL (Structured Data) – a module to support 
working with structured data; 

• MLlib (Machine Learning) – scalable machine 
learning library; 

• GraphX (Graph Analysis) – module specializing in 
graphs and graph-parallel calculations. 

 The Apache Spark and Cassandra architecture (Fig. 1) 
clearly shows the connections and communication options 
between the different modules. 

 
Fig. 1. Apache Spark and Cassandra Architecture 

Our prototype uses Apache Cassandra 3.11.11 and Apache 
Spark 3.2.1 versions. The connection between the two was 
realized with the help of spark-cassandra-connector-
assembly-3.1.0, and we chose Python from the several 
programming languages provided by Spark (R, Python, Scala, 
Java). Within Spark, the SparkSQL and MLlib modules have 
been integrated so far, so we present some key statistical data 
analysis and processing options using them. 

Apache Spark is a widely used and supported open-source 
tool for statistical analysis, machine learning and data science. 
The purpose of using Spark MLlib libraries is to provide a 

high-level and easy-to-use set of APIs for performing 
machine-learning-type and various data analysis tasks. 

For our implementation we used the data sets of the open-
source factory system called Combined Cycle Power Plant 
(CCPP) [17] describing 6 years of operation, which has 9568 
data points, and all data points has 5 sensor values (ambient 
temperature, ambient pressure, relative humidity, vacuum and 
electric power). This data was inserted into the database using 
a CQL (Cassandra Query Language) command and can then 
be read or modified using the assembly connector between 
Spark-Cassandra. As already mentioned, we chose the Python 
programming language, so we use the PySpark interface for 
data access. Depending on the data processing needs, we can 
change how many slaves we create for the spark master, that 
is how many resources (CPU, memory, disk, etc.) we allocate 
to the Spark application to implement data processing as 
quickly as possible. With this in mind, we can create our 
SparSession in the PySpark and then the SQLContext to query 
the data in the Cassandra database. 
spark = SparkSession.builder. 
appName('SparkCassandraTest').config('spark.serializer', 
'org.apache.spark.serializer.KryoSerializer').config('spark.cassandr
a.connection.host', localhost).getOrCreate() 

sqlContext = SQLContext(sparkContext=spark.sparkContext, 
sparkSession=spark) 

 The data needed to be processed is stored in a DataFrame, 
which is a distributed collection for organized data in Spark. 
df_data = sqlContext.read. 
format('org.apache.spark.sql.cassandra').options(table='olddata2', 
keyspace='spark_cass_data').load().select("AT", "AP", "RH", "PE", 
"V").toDF("temperature", "pressure", "humidity", " electric power 
", "vacuum") 

Below we take a look at some of the very important 
functionalities of Spark that allow us to easily and quickly 
retrieve valuable information from stored data, analyze our 
data, detect outliers, and make predictions using a linear 
regression model.  

 With Spark's built-in functions, we can calculate some 
descriptive statistics in a matter of seconds. The following 
descriptive statistics are examined: mean, standard deviation, 
minimum, maximum, median, variance, skewness, kurtosis, 
covariance, and correlation. 

1) Mean, Standard deviation, minimum and maximum 
values: these statistics can be calculated for the selected 
columns in a few seconds using the summary() command: 

a) count – number of items in that column; 
b) mean – arithmetic mean (sample mean), undistorted 

estimate of expected value; 
c) stddev – standard deviation, the mean squared 

deviation from the arithmetic mean; 
d) min. and max. – determination of minimum and 

maximum value; 
e) 25%, 50%, 75% – approximate percentage of 

quartiles; 
df_data.summary().show() 
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TABLE I.  SUMMARY OF ALL SENSOR DATA 

summar
y 

temperatu
re 

pressu
re 

humidit
y 

electric 
power 

vacuu
m 

count 9568 9568 9568 9568 9568 
mean 19.651 1013.2

59 
73.308 454.365 54.305 

stddev 7.452 5.938 14.600 17.066 12.707 
min 1.81 992.89 25.56 420.26 25.36 

25% 13.51 1009.1 63.32 439.75 41.74 
50% 20.34 1012.9

4 
74.96 451.51 52.08 

75% 25.72 1017.2
6 

84.83 468.43 66.54 

max 37.11 1033.3 100.16 495.76 81.56 

2) Median – the mean value of the data set, gives a robust 
estimate and is not sensitive to extreme values.  
The median is calculated using the {(n+1)/2} formula, where 
n is the ordered row of sensor values.  
 
df_data.agg(func.percentile_approx("temperature",0.5).alias("med
ian")).show() 

TABLE II.  THE MEDIAN VALUE OF ALL SENSOR DATA 

median 
temperature pressure humidity electric power vacuum 

20.34 1012.94 74.96 451.51 52.08 

3) Variance: it is used to describe the fluctuation of the 
data around the mean, that is, the value of the variance is 
small when our data move around the mean. The variance 
corresponds to the square of the standard deviation. (Standard 
deviation - how much our values deviate from the average.) 
This is calculated according to the following formula: 
 𝑆! 	= 	∑($!%$̅)

"

(%)
 (1) 

where S2 is the sample variance, xi is the value of the one 
observation, �̅� is the mean value of all observations and n is 
the number of observations.  
df_data.agg({'temperature': ' variance'}).show() 

TABLE III.  THE VARIANCE VALUE OF ALL SENSOR DATA 

variance 
temperature pressure humidity electric power vacuum 

55.539 35.269 213.167 291.282 161.490 

4) Skewness: determines the offset of the peak of the 
distribution from the center position. This is calculated 
according to the following formula: 

 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠	 = 	 )
(

∑ ($#%$̿)$
%
#&'

+$
 (2) 

If the value is positive then the skew of the distribution is to 
the right - the mean shifts upward, the mean is greater than 
the median. If the value is negative, then the skew of the 
distribution is to the left - the mean shifts downward, there 
are small outliers, the mean is less than the median. If the 
value is zero, then the data are normally distributed, the data 
series is not skewed in either direction.  
df_data.agg({'temperature': 'skewness'}).show() 

TABLE IV.  THE SKEWNESS VALUE OF ALL SENSOR DATA 

skewness 
temperature pressure humidity electric power vacuum 

-0.136 0.265 -0.431 0.306 0.198 
 
5) Kurtosis: an indicator that describes the shape of the 

data set vertically. This is calculated according to the 
following formula: 

 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠	 = 	 )
(
∑ ($!%$̅)(
%
!&'

+(
 (3) 

If the value is positive, then the distribution is more peaky 
than normal distribution. If the value is negative, then the 
distribution is flatter than normal. If the value is zero, then 
the distribution is normal. 
df_data.agg({'temperature': 'kurtosis'}).show() 

TABLE V.  THE KURTOSIS VALUE OF ALL SENSOR DATA 

kurtosis 
temperature pressure humidity electric power vacuum 

-1.037 0.093 -0.444 -1.048 -1.444 
 

6) Histogram: with this representation, it is possible to 
display frequency distributions. 
df_data.hist(bins = 50, figsize = (10,7.5)) 
 
Based on the obtained results (Fig. 2), the temperature (AT) 
and exhaust vacuum (V) show a somewhat bimodal 
distribution. Furthermore, the ambient pressure (AP) follows 
a normal distribution, while the relative humidity exhibits a 
left skewness. 
 

 
Fig. 2. Histogram of AT, AP, RH and V 

7) Covariance: gives the co-movement of two different 
variables. This is calculated according to the following 
formula: 
 𝑐𝑜𝑣(𝑥, 𝑦) 	= ∑ ($!%$̅)	(-!%-.)

%
!&'

(%)
 (4) 

If the value is positive, then the relationship between X and 
Y is positive and if X is large, then Y is also large, and if X 
is small, then Y is also small. If the value is negative, then the 
relationship between X and Y is negative, and if X is large, 
then Y is small, and if X is small, then Y is large. If the value 
is close to zero, then there is no linear relationship between 
the two variables X and Y. 
Based on the relationships described in Tükefci's article [18], 
which describes that the value of electrical power depends on 
changes in temperature, humidity, pressure, and vacuum, we 
calculated the covariance between the electrical power (X) 
and the other 4 sensors (Y). 
df_data.cov('temperature','electric power') 

TABLE VI.  COVARIANCE VALUES 

covariance – electric power 
temperature pressure humidity vacuum 

-120.593 52.546 97.129 -188.642 
 

8) Correlatation:  gives the magnitude and direction of 
the linear relationship between two values, that is it defines 
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their relationship to each other. This is calculated according 
to the following formula:  
 𝑐𝑜𝑟(𝑥, 𝑦) 	= /01($,-)

+)+*
 (5) 

The minimum value is -1 and the maximum value is 1. If the 
value is 1, then the relationship between the two variables is 
perfect for direct proportionality. If the value is 0, then there 
is no relationship between the two variables, so they are 
independent. If the value is -1, then the two variables are 
perfectly consistent, but the nature of the relationship is 
inversely proportional. 
Based on the relationships described in Tükefci's article [19], 
which describes that the value of electrical power depends on 
changes in temperature, humidity, pressure, and vacuum, we 
calculated the correlation between the electrical power (X) 
and the other 4 sensors (Y). 
df_data.corr('temperature','electric power') 

TABLE VII.  CORRELATION VALUES 

correlation – electric power 
temperature pressure humidity vacuum 

-0.948 0.518 0.389 -0.869 

The electrical power seems to be highly correlated with 
the temperature and vacuum and shows inverse 
proportionality. 

If we plot the obtained correlation values (Fig. 3) with the 
help of HeatMap, it can be concluded that there is a high 
correlation between the temperature and the electrical power, 

as well as a high correlation between the electrical power and 
the exhaust vacuum. Furthermore, AP and RH show a 
positive correlation with EP, while AT and V show a strong 
negative correlation. 
 

corr = df_data.corr() 
sns.heatmap(corr,annot=True,cmap='YlGnBu') 

 
Fig. 3. Correlation HeatMap 

The insight provided by the correlation helps in establishing 
the model of the system. 

 

 
Fig. 4. The result of the parameters displayed by the pairplot function 
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With the pairplot function, the bivariate distributions in 
the data set for several pairs can be represented and analyzed. 
When using the pairplot function (Fig. 4), the following can 
be determined about our data set:  

• strong positive correlation between AT and V (0.84): 
this is called multicollinearity, which is generally not 
good for systems, because our functions should be 
independent of each other; 

• strong negative correlation between AT and EP (-
0.95): if the ambient temperature increases, the 
electrical energy output decreases; 

• strong negative correlation between V and EP (-0.87): 
if the exhaust vacuum is high, the emitted energy is 
very low. 

sns.pairplot(df_data) 
With Apache Spark, we can also detect outliers by 

running some functions and commands. During the test, we 
will look at the values of all sensors. The task will be to find 
all abnormal measurements from the DataFrame. To do this, 
we need to calculate the upper and lower threshold values, 
which are usually 3 standard deviations away from the mean 
of the distribution. 
 outlierthresholds = mean ± 3 * stddev (6) 

Measurements above the upper limit or below the lower 
limit will be considered as outliers.  

In the following, only the code created for the values of 
the pressure sensor will be described, but the same can be done 
for the other sensors. 
df_AP = sqlContext.read. 
format('org.apache.spark.sql.cassandra').options(table='olddata2',  
keyspace='spark_cass_data').load().select("id","AP").toDF("id","
pressure") 

The mean and standard deviation of the sensor data can 
then be determined. Then, using these, we create 2 new 
columns for the DataFrame for the outlier thresholds (defined 
by the formula indicated above). 
df_AP_mean = df_AP.agg({'pressure' : 'mean'}) 
df_AP_stddev = df_AP.agg({'pressure' : 'stddev'}) 
df_AP_stat = df_AP_mean. 
withColumn("Stddev",lit(df_AP_stddev.collect()[0][0])).withColu
mn("UpperLimit", lit(df_AP_mean.collect()[0][0] + 
(df_AP_stddev.collect()[0][0] * 3))).withColumn("LowerLimit", 
lit(df_AP_mean.collect()[0][0] - (df_AP_stddev.collect()[0][0] * 
3))) 

Next, we link the DataFrame containing our sensor data to 
the new DataFrame. The result is a DataFrame with mean, 
standard deviation, and upper and lower thresholds for each 
sensor value. 
joinDF = df_AP.join(df_AP_stat) 

Based on this information, we can filter out rows that fall 
outside the range enclosed by the specified outlier thresholds. 
def detect_outlier(values, UpperLimit, LowerLimit): 
...     return (values < LowerLimit) or (values > UpperLimit) 
 

udf_detect_outlier = udf(lambda pressure, UpperLimit, 
LowerLimit: detect_outlier(pressure, UpperLimit, LowerLimit), 
BooleanType()) 
outlierDF = joinDF.withColumn("isOutlier", 
udf_detect_outlier(joinDF.pressure, joinDF.UpperLimit, 
joinDF.LowerLimit)).filter("isOutlier") 
outlierDF.count() 
51 

The results show that the detection of the outlier value 
found 51 pressure values outside the upper and lower outlier 
threshold intervals. From the results of the other sensor value 
tests, we found that in addition to the pressure values, the 
humidity values also contain outlier values. No outliers were 
found for the other sensor values. 
If we plot these sensor data using the box plot function, we get 
the following diagrams, where we can see the outliers marked 
with black dots (Fig. 5). 

 

 
Fig. 5. Outlier Detection – box plot 

Apache Spark's MLlib libraries also allow us to make 
estimates. Linear regression is one of the most widely used 
predictive modeling methods. The purpose of the analysis is 
also to check whether the independent variable explains the 
dependent variable.  

We present three solutions for regression. 

A. Matplot and Numpy 
With the use of the matplot and numpy libraries, we can 

easily plot our linear regression line and selected pressure 
values. In order to make our diagram interpretable and easy to 
see, we plot all 5-sensor values side by side, so we examine 
them together.  

The resulting graph (Fig.6) clearly shows how the data points 
of the sensors are located relative to the linear line. 
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Fig. 6. Linear Regression 

B. Determination of linear regression using PySpark 
MLlib 

To perform linear regression calculations, we need to 
import three newer types of libraries into the PySpark 
environment: 
from pyspark.ml.feature import VectorAssembler 
from pyspark.ml.regression import LinearRegression 
from pyspark.ml.evaluation import RegressionEvaluator 

To construct a linear regression model, we use the full data 
set, all 5 sensor values, from which the electric power will be 
the label and the other four sensor values will match the 
feature. Features are all independent variables that we believe 
help predict the value of a dependent variable. The label is a 
dependent variable, the value of which will be predicted by 
our model.  

VectorAssebler sums all the features into one vector, 
resulting in a DataFrame. 
vectorAssembler = VectorAssembler(inputCols = ['temperature', 
'pressure', 'humidity', 'vacuum'], outputCol = 'features')  
v_df_data = vectorAssembler.transform(df_data)  
v_df_data = v_df_data.select(['features', 'power electric'])  

We can then divide our data into two parts: train (70%) 
and test (30%) data. We use the train data to teach our model 
based on certain algorithms and then perform the prediction 
on the test data. 
splits = v_df_data.randomSplit([0.7,0.3]) 
train_df = splits[0] 
test_df = splits[1] 

After importing the LinearRegression package, we use it 
as an algorithm for predictive modeling to create the model. 
The fit() method is used to transmit training data for training 
the model, so our model predicts the values of the test data. 
lr = LinearRegression(featuresCol = 'features', labelCol='electric 
power', maxIter=10, regParam=0.3, elasticNetParam=0.8) 
lr_model = lr.fit(train_df) 
lr_predictions = lr_model.transform(test_df) 
lr_predictions.select("prediction","electric power","features") 
.show(5) 

TABLE VIII.  PREDICTION OF ELECTRIC POWER VALUES 

prediction electric power features 
489.94377352648746 490.55 [1.81, 1026.92, 76….] 
489.88982637976596 490.34 [2.34, 1028.47, 69….] 

489.565899055038 488.69 [2,58, 1028.68, 69….] 
486.27927130701426 485.2 [3.0, 1011.0, 80.14…] 

482.1807303693204 489.38 [3.26, 996.32, 100….] 
 

We use an evaluator to check how well our model predicts 
the label, that is, in our case, the electric power values, and 
whether selecting linear regression as an algorithm for our 

model was a good choice. Regression model evaluation was 
performed using the Spark ML RegressionEvaluator. The 
metrics used are R² and RMSE (square root error). 
lr_evaluator = 
RegressionEvaluator(predictionCol="prediction",labelCol="electri
c power",metricName="r2") 
print("R Squared (R2) on test data = %g" % 
lr_evaluator.evaluate(lr_predictions)) 
R Squared (R2) on test data = 0.926259 
 

test_result = lr_model.evaluate(test_df) 
print("Root Mean Squared Error (RMSE) on test data = %g" % 
test_result.rootMeanSquaredError) 
Root Mean Squared Error (RMSE) on test data = 4.75025 

The value of R² depends largely on how we select the 
training and test data, so the result may vary based on this. In 
our case, R² approaches 1, so it fits well. This means that the 
sensor values selected in features explain and affect the label 
(electric power) values. RMSE measures the differences 
between the values estimated by the model and the actual 
values. 

When we plot the predicted values obtained during the 
linear regression model compared to the test data set, which 
was separated from the original data set using the regplot 
function, we can observe the result shown in the figure below. 
sns.regplot(x= lr_predictions, y=test_df, lowess=True, 
line_kws={'color': 'red'}) 
 

 
Fig. 7. Representation of the predicted and test datasets  

It can be observed that the predicted values of the electric 
power are mostly located near to the line. 

By drawing the regression diagram (Fig. 8), it is possible 
to examine what trends can be observed for the monthly or 
annual analysis, since the data set and the accompanying 
documentation do not contain information about time stamps, 
so the location of the data points within the 6-year time axis 
cannot be precisely determined. 
sns.regplot(x=df_data.index, y=df.EP, x_bins=72) 
sns.regplot(x=df_data.index, y=df.EP, x_bins=6) 
 

 
Fig. 8. Regression diagram 

42

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 3, NO. 1, JUNE 2023, pp. 36-44

 
 



Testing for stationarity is frequently used in autoregressive 
modeling. By applying an extended Dicky-Fuller test to the 
electrical power data of the data set, its stationarity can be 
examined. This means that, an insight into the time 
dependence of the data can be obtained. 
ADF Statistic: -66.527046 
p-value: 0.000000 
Critical Values: 
 1%: -3.431 
 5%: -2.862 
 10%: -2.567 
From the obtained result, it can be concluded that the data 
show stationarity, since the value of the p-value is lower than 
the significance level (0.05), so it has no trend and shows a 
constant deviation over time. 

C. Random Forest Regression 
Similar to linear regression, we also applied the Random 

Forest Regression technique to the data set, so it is possible 
to perform both regression and classification tasks, that is, 
several decision trees are combined to make predictions. The 
importance of the model comes from its ability to measure 
and rank the importance of input characteristics in predicting 
the target variable. 

 

rfr = RandomForestRegressor(n_estimators = 100, random_state = 
0) 
rfr.fit(X_train, y_train) 
 

By plotting the test and predicted values together (Fig. 9), we 
can see that the two sets of values show a very high level of 
coverage. 
 

 
Fig. 9. Representation of predicted values and the test data set as a result 

of Random Forest Regression (orange: predicted, blue: actual) 

From the obtained results, it can be seen that our Random 
Forest Regression model shows better performance than 
linear regression. The R2 value of 0.956 means that 95.6% of 
the variation of the EP target variable can be explained by the 
model, and the RMSE also gives a smaller value.  

 
RMSE: 0.209 
R2: 0.956 
 
Therefore, it can be concluded that the use of Random Forest 
Regression can be more effective compared to linear 
regression. 

V. CONCLUSIONS 
 It is important to keep in mind that in the industry, the 
processing and analysis of data and the extraction of useful 
information by using some method or algorithm is an 
important aspect. To this end, improvements and innovations 

in data analysis and processing need to be continuously 
developed and implemented.  

 In this paper we have developed and presented an 
alternative solution that allows us to obtain the most important 
descriptive statistical parameters in a simple way, as well as 
an alternative in the field of outlier detection and prediction. 
For this, we used both Apache Cassandra and Apache Spark 
open-source shared database and data processing systems, 
which are playing an increasingly important role in the 
intelligent, machine learning algorithms used for real-time 
data analysis. 

As a result of the statistical models used, we showed that 
the analysis is consistent with the operating principles and 
conclusions described in Tüfekci’s article [19].  

The descriptive statistics and the graphical representations 
of sensor data are in consent with the normal operation of the 
combined cycle power plant.  

 In the scope of this study, we conducted an evaluation of 
the efficacity of linear and random forest models, as subsets 
of regression methodologies, in generating more appropriate 
and precise outcomes within the area of predictive analytics.
 We have demonstrated how Apache Spark and Cassandra 
Architecture can be usefully used for time series analysis and 
we created an environment in which other statistical analysis 
can be performed. 

As an enhancement, the goal is to integrate the Apache 
Spark GraphX and Spark Streaming modules into our system 
and create a unified user interface that allows to get the 
metrics, errors, and predictions we want with a few clicks and 
configurations. Also, we want to extend the used data 
processing algorithms and try different time series data. 
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