
Analysis of Industrial Sensor Data Using Statistical
and Regression Methods

Katalin FERENCZ
Doctoral School of Applied Informatics

and Applied Mathematics - Óbuda
University, Budapest, Hungary

Faculty of Technical and Human
Sciences, Târgu Mureș, Romania -
Sapientia Hungarian University of

Transylvania
ferenczkatalin@stud.uni-obuda.hu

ferenczkatalin@ms.sapientia.ro

József DOMOKOS
Faculty of Technical and Human

Sciences, Târgu Mureș
Sapientia Hungarian University of

Transylvania
Târgu Mureș, Romania
domi@ms.sapientia.ro

Levente KOVÁCS
John Von Neumann Faculty of

Informatics
Óbuda University

Budapest, Hungary
kovacs@uni-obuda.hu

Abstract— Today's industrial landscape is primarily driven
by rapid and effective data processing and evaluation.
Consequently, industries should devote considerable attention
and resources towards real-time examination of the large data
sets acquired, enabling timely extraction of vital information for
outlier detection, fake data identification, and predictive
analysis to mitigate unforeseen expenses. This rigorous process
of data analysis necessitates the employment of a diverse set of
algorithms that align with the specific objectives, spanning a
wide spectrum of potential solutions. In this manuscript, we
demonstrate how Apache Spark's unified engine can be
harnessed for conducting statistical analysis of time series data,
thereby expediting industrial data analysis processes.
Furthermore, we examine and implement both linear and
random forest regression models within the context of the
demonstrated use case.

Keywords— IoT, IIoT, regression models, algorithms,
predictions, outlier detections, Apache Spark

I. INTRODUCTION
The rapid development of the industry and IT (Information

Technology) and the constant technological renewal provide
more and more opportunities for companies operating in the
industrial sector. The Internet of Things (IoT) is becoming
more widespread in industry than the Industrial Internet of
Things (IIoT). As a result, the integration of various sensors
and data sources increases exponentially the amount of data
that can be extracted, which usually traditional algorithms are
not able to process optimally in real time. Thus, there is a need
to use algorithms that also use intelligent machine learning
and artificial intelligence. This conducted us to expand our
data processing systems with capabilities that provide
valuable information based on historical and real-time data to
improve current performance, make estimates, and detect
underlying trends and correlations.

Industry, especially the manufacturing industry, is a data-
rich environment where monitoring of assets and processes
continuously generates data that is only partially used by many
manufacturers. Manufacturers operate high-cost local or cloud
infrastructure to store this large and ever-expanding amount
of data. Intelligent data analysis as well as the use of real-time
monitoring systems can provide a solution to create value
from the various data stored. An important goal of the ongoing
4th Industrial Revolution, or Industry 4.0, is to create value,

generate relevant knowledge, and even turn it into a business
advantage for manufacturers, by interpreting the data
collected. Predictive maintenance of industrial equipment has
become a defining aspect of Industry 4.0 and is a critical area
today. As a result of conventional reactive maintenance,
where system repairs are performed after the fault has been
detected, the whole process shut down is compulsory and the
repair costs are high. Based on the acquired and analyzed data,
predictive maintenance is possible, thus enabling the
prevention of equipment failure and thus cost savings.

Due to the pace of development of industry and
technology, the continuous monitoring and maintenance of
systems and machines has become important, and the
information obtained from them allows for fault diagnosis.
Based on this, preventive or predictive strategies can be
developed and applied, thus reducing the maintenance costs of
machines in the long run and increasing the service life of the
equipment [1]. At the same time, unplanned production
downtime can be avoided. In order to achieve the right result
or extract useful information from the collected data,
calculations must be performed, algorithms must be run,
decision-making mechanisms must be applied, and the
decision made must be executed with the best possible
response time and limited resources. However, it is also
important to keep in mind that the time and resources available
may change during the operation of the system.

Today, the industry is already trying to use various
diagnostic and monitoring tools that supervises industrial
processes, detect faults, deviations from a defined normal
mode of operation, and in these cases different strategies are
developed to signal or manage different situations. To use the
appropriate diagnostic system, a faultless system model and
a management system model describing typical faults are
created and then used for fault diagnosis [2]. A large amount
of data is collected and stored during the monitoring of the
state of the system and the supervision of its processes. The
analysis and interpretation of this data facilitates the above-
mentioned processes. Among the simplest methods is the
preparation of statistical analyses, which provide valuable
status information beyond the knowledge of the system
actuators. Furthermore, the application of various models
(such as regression models) on the data set can provide very
valuable information for predictions and decision-making.

36

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 3, NO. 1, JUNE 2023, pp. 36-44

Cite as: K. Ferencz, J. Domokos, and L. Kovács, “Analysis of Industrial Sensor Data Using Statistical and Regression Methods”, Syst. Theor. Control Comput.

J., vol. 3, no. 1, pp. 36–44, Jun. 2023.
DOI: 10.52846/stccj.2023.3.1.48

This manuscript expands upon our preliminary findings,
initially presented at the 2022 IEEE 16th International
Symposium on Applied Computational Intelligence and
Informatics (SACI), “A statistical approach to time series
sensor data evaluation using Apache Spark modules” [3].
Herein, we provide a more comprehensive methodology,
augmented data set, and an extended review and analysis,
thereby offering a more in-depth understanding of the subject
matter.

II. REAL-TIME SYSTEMS AND REGRESSION MODELS
Each of the physical processes used in the industry takes

place at a given time, tied to time constraints that determine
the activity and nature of the entire system. Thus, time appears
as a constraint in the interpretation of systems. These systems,
which take time into account as a key factor, are called real-
time systems. Real-time systems maintain constant contact
with their environment, thus obtaining information about the
state of the environment. The information is collected with the
help of sensors, and then it is transformed into useful
knowledge by algorithms, and based on different decision-
making mechanisms, various intervening actuators and
executors perform actions in order to achieve the desired state
and result [4][5][6].

There are several decision-making mechanisms described
in the literature [5]:

• reactive agents: the execution of a basic action
depending on the state of the outside world, based on a
predetermined strategy;

• thinking agents: calculation, analysis, decision are
needed to select the right action; planning agents:
makes an estimate of the future state of the
environment and the impact of actions.

Regression models find their greatest utility in contexts
where the dependent variable under study is continuous,
encompassing a multitude of potential values. Such instances
might include temperature measurements, among other
continuous data types. The primary objective of using
regression models in these contexts is to determine the degree
of influence of the explanatory variable against the dependent
variable [7].

These models afford the capacity to manage numerous
variables concurrently, thereby facilitating exploration of the
interrelationships among these variables. Furthermore,
regression models demonstrate substantial efficacy in the
analysis of time series data. They also furnish the means to
generate predictions upon the extant data [8].

There are several regression models that cover different
application areas, the most commonly used regression models
are:

• Linear Regression: it can be used to model the linear
relationships between the dependent variable and the
independent variable(s), the effect of each variable can
be clearly illustrated from the model [9];

• Polynomial Regression: can be used if there is a
nonlinear relationship between the independent
variable and the dependent variable;

• Logistic Regression: used for binary target-dependent
variables, models the logarithm of the odds as a
function of the independent variables;

• Support Vector Regression: it is based on the basic
principle of the support vector machine and effectively
handles non-linear relationships and high-dimensional
data;

• Random Forest Regression: able to handle non-linear
relationships and complex interactions between
independent variables, for which it combines many
decision trees to build the final model [10].

As part of our research, we explored the implementation of
both linear and random forest regression models in more
detail, and we have interpreted their results during our use
case. Also, we show that regression models are suitable for
real time systems.

III. INDUSTRIAL APPLICATION OF INTELLIGENT
ALGORITHMS

In the intelligent manufacturing environment, the
installation of various intelligent sensor and data acquisition
units can collect large amounts of data (event and status
information) about the operation of the system and the nature
of the processes. Building on this data, it will be possible to
use several frameworks in the industry, especially in the
manufacturing environment, that allow for conscious
statistical data analysis and evaluation based on real-time and
historical data, as well as for dynamic response and real-time
optimization of production. These analyzes provide predictive
data that can be used to create self-adjusting mechanisms,
dynamically changeable models, and alarm systems to help
keep the production system running normally, or to support
the rapid resumption of a critical outage, or even prevent it
from occurring. An example of such a system is the IDARTS
(Intelligent Data Analysis and Real-Time Supervision)
framework presented by Ricardo Silva Peres in his study [11].
The Intelligent Predictive Maintenance (IPdM) System [12]
presented by K. Wang also presents an industry-based system
for processing real-time information and assisting in
diagnostics and prognosis based on it. The distributed
framework presented by Zhiqiang Ge [13] examines plant-
wide industrial processes and then forecasts and diagnoses key
performance indices. In his study Dazhong Wu [14] presents
a fog calculation system that uses cloud-based machine
learning algorithms that play an important role in process
observation and predictive analysis during manufacturing
processes.

In this article [15], L. Magadán presents a low-cost, self-
implemented real-time monitoring system that meets the
requirements of Industry 4.0. The article presents a prototype
of IIoT that uses low-cost sensors and gateways, combining
various analyzes and fog calculations to support the
implementation of predictive maintenance. The data required
for implementation were stored in the cloud and a predictive
model based on machine learning was used to achieve the
desired result.

In our previously published papers presenting an earlier
phase of our research [16], we have introduced the
architecture of our data collection and processing system. This
paper focuses on an expansion of the data processing
component of our system, which we have recently developed
and will be presented herein.

37

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 3, NO. 1, JUNE 2023, pp. 36-44

IV. APPLICATION OF APACHE SPARK
Nowadays, the industry is most concerned with how it can

meet the expectations set for Industry 4.0, keep pace with the
rapid development of technology, and achieve cost-effective
day-to-day operations. To do this, however, industry must also
adapt to new technologies and take advantage of the
opportunities these offer.

In the following, we will present our system that also helps
in industrial fast data analysis and detection of outliers in time-
series of sensor values.

We are working on a prototype system that will allow easy
storage of data collected from a large number of different
types of smart devices in the Apache Cassandra open-source
distributed NoSQL database management system [17].
Building on this, Apache Spark, also using an open-source
data processing system, will allow the user to take advantage
of Spark's ability to perform instant data analysis on demand.
Apache Spark provides several options for data analysis:

• Spark Streaming (Near Real-Time) – scalable and
fault-tolerant stream processing system;

• SparkSQL (Structured Data) – a module to support
working with structured data;

• MLlib (Machine Learning) – scalable machine
learning library;

• GraphX (Graph Analysis) – module specializing in
graphs and graph-parallel calculations.

 The Apache Spark and Cassandra architecture (Fig. 1)
clearly shows the connections and communication options
between the different modules.

Fig. 1. Apache Spark and Cassandra Architecture

Our prototype uses Apache Cassandra 3.11.11 and Apache
Spark 3.2.1 versions. The connection between the two was
realized with the help of spark-cassandra-connector-
assembly-3.1.0, and we chose Python from the several
programming languages provided by Spark (R, Python, Scala,
Java). Within Spark, the SparkSQL and MLlib modules have
been integrated so far, so we present some key statistical data
analysis and processing options using them.

Apache Spark is a widely used and supported open-source
tool for statistical analysis, machine learning and data science.
The purpose of using Spark MLlib libraries is to provide a

high-level and easy-to-use set of APIs for performing
machine-learning-type and various data analysis tasks.

For our implementation we used the data sets of the open-
source factory system called Combined Cycle Power Plant
(CCPP) [17] describing 6 years of operation, which has 9568
data points, and all data points has 5 sensor values (ambient
temperature, ambient pressure, relative humidity, vacuum and
electric power). This data was inserted into the database using
a CQL (Cassandra Query Language) command and can then
be read or modified using the assembly connector between
Spark-Cassandra. As already mentioned, we chose the Python
programming language, so we use the PySpark interface for
data access. Depending on the data processing needs, we can
change how many slaves we create for the spark master, that
is how many resources (CPU, memory, disk, etc.) we allocate
to the Spark application to implement data processing as
quickly as possible. With this in mind, we can create our
SparSession in the PySpark and then the SQLContext to query
the data in the Cassandra database.
spark = SparkSession.builder.
appName('SparkCassandraTest').config('spark.serializer',
'org.apache.spark.serializer.KryoSerializer').config('spark.cassandr
a.connection.host', localhost).getOrCreate()

sqlContext = SQLContext(sparkContext=spark.sparkContext,
sparkSession=spark)

 The data needed to be processed is stored in a DataFrame,
which is a distributed collection for organized data in Spark.
df_data = sqlContext.read.
format('org.apache.spark.sql.cassandra').options(table='olddata2',
keyspace='spark_cass_data').load().select("AT", "AP", "RH", "PE",
"V").toDF("temperature", "pressure", "humidity", " electric power
", "vacuum")

Below we take a look at some of the very important
functionalities of Spark that allow us to easily and quickly
retrieve valuable information from stored data, analyze our
data, detect outliers, and make predictions using a linear
regression model.

 With Spark's built-in functions, we can calculate some
descriptive statistics in a matter of seconds. The following
descriptive statistics are examined: mean, standard deviation,
minimum, maximum, median, variance, skewness, kurtosis,
covariance, and correlation.

1) Mean, Standard deviation, minimum and maximum
values: these statistics can be calculated for the selected
columns in a few seconds using the summary() command:

a) count – number of items in that column;
b) mean – arithmetic mean (sample mean), undistorted

estimate of expected value;
c) stddev – standard deviation, the mean squared

deviation from the arithmetic mean;
d) min. and max. – determination of minimum and

maximum value;
e) 25%, 50%, 75% – approximate percentage of

quartiles;
df_data.summary().show()

38

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 3, NO. 1, JUNE 2023, pp. 36-44

TABLE I. SUMMARY OF ALL SENSOR DATA

summar
y

temperatu
re

pressu
re

humidit
y

electric
power

vacuu
m

count 9568 9568 9568 9568 9568
mean 19.651 1013.2

59
73.308 454.365 54.305

stddev 7.452 5.938 14.600 17.066 12.707
min 1.81 992.89 25.56 420.26 25.36

25% 13.51 1009.1 63.32 439.75 41.74
50% 20.34 1012.9

4
74.96 451.51 52.08

75% 25.72 1017.2
6

84.83 468.43 66.54

max 37.11 1033.3 100.16 495.76 81.56

2) Median – the mean value of the data set, gives a robust
estimate and is not sensitive to extreme values.
The median is calculated using the {(n+1)/2} formula, where
n is the ordered row of sensor values.

df_data.agg(func.percentile_approx("temperature",0.5).alias("med
ian")).show()

TABLE II. THE MEDIAN VALUE OF ALL SENSOR DATA

median
temperature pressure humidity electric power vacuum

20.34 1012.94 74.96 451.51 52.08

3) Variance: it is used to describe the fluctuation of the
data around the mean, that is, the value of the variance is
small when our data move around the mean. The variance
corresponds to the square of the standard deviation. (Standard
deviation - how much our values deviate from the average.)
This is calculated according to the following formula:
 𝑆! 	= 	∑($!%$̅)

"

(%)
 (1)

where S2 is the sample variance, xi is the value of the one
observation, �̅� is the mean value of all observations and n is
the number of observations.
df_data.agg({'temperature': ' variance'}).show()

TABLE III. THE VARIANCE VALUE OF ALL SENSOR DATA

variance
temperature pressure humidity electric power vacuum

55.539 35.269 213.167 291.282 161.490

4) Skewness: determines the offset of the peak of the
distribution from the center position. This is calculated
according to the following formula:

 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠	 =)
(

∑ ($#%$̿)$
%
#&'

+$
 (2)

If the value is positive then the skew of the distribution is to
the right - the mean shifts upward, the mean is greater than
the median. If the value is negative, then the skew of the
distribution is to the left - the mean shifts downward, there
are small outliers, the mean is less than the median. If the
value is zero, then the data are normally distributed, the data
series is not skewed in either direction.
df_data.agg({'temperature': 'skewness'}).show()

TABLE IV. THE SKEWNESS VALUE OF ALL SENSOR DATA

skewness
temperature pressure humidity electric power vacuum

-0.136 0.265 -0.431 0.306 0.198

5) Kurtosis: an indicator that describes the shape of the

data set vertically. This is calculated according to the
following formula:

 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠	 =)
(
∑ ($!%$̅)(
%
!&'

+(
 (3)

If the value is positive, then the distribution is more peaky
than normal distribution. If the value is negative, then the
distribution is flatter than normal. If the value is zero, then
the distribution is normal.
df_data.agg({'temperature': 'kurtosis'}).show()

TABLE V. THE KURTOSIS VALUE OF ALL SENSOR DATA

kurtosis
temperature pressure humidity electric power vacuum

-1.037 0.093 -0.444 -1.048 -1.444

6) Histogram: with this representation, it is possible to
display frequency distributions.
df_data.hist(bins = 50, figsize = (10,7.5))

Based on the obtained results (Fig. 2), the temperature (AT)
and exhaust vacuum (V) show a somewhat bimodal
distribution. Furthermore, the ambient pressure (AP) follows
a normal distribution, while the relative humidity exhibits a
left skewness.

Fig. 2. Histogram of AT, AP, RH and V

7) Covariance: gives the co-movement of two different
variables. This is calculated according to the following
formula:
 𝑐𝑜𝑣(𝑥, 𝑦) 	= ∑ ($!%$̅)	(-!%-.)

%
!&'

(%)
 (4)

If the value is positive, then the relationship between X and
Y is positive and if X is large, then Y is also large, and if X
is small, then Y is also small. If the value is negative, then the
relationship between X and Y is negative, and if X is large,
then Y is small, and if X is small, then Y is large. If the value
is close to zero, then there is no linear relationship between
the two variables X and Y.
Based on the relationships described in Tükefci's article [18],
which describes that the value of electrical power depends on
changes in temperature, humidity, pressure, and vacuum, we
calculated the covariance between the electrical power (X)
and the other 4 sensors (Y).
df_data.cov('temperature','electric power')

TABLE VI. COVARIANCE VALUES

covariance – electric power
temperature pressure humidity vacuum

-120.593 52.546 97.129 -188.642

8) Correlatation: gives the magnitude and direction of
the linear relationship between two values, that is it defines

39

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 3, NO. 1, JUNE 2023, pp. 36-44

their relationship to each other. This is calculated according
to the following formula:
 𝑐𝑜𝑟(𝑥, 𝑦) 	= /01($,-)

+)+*
 (5)

The minimum value is -1 and the maximum value is 1. If the
value is 1, then the relationship between the two variables is
perfect for direct proportionality. If the value is 0, then there
is no relationship between the two variables, so they are
independent. If the value is -1, then the two variables are
perfectly consistent, but the nature of the relationship is
inversely proportional.
Based on the relationships described in Tükefci's article [19],
which describes that the value of electrical power depends on
changes in temperature, humidity, pressure, and vacuum, we
calculated the correlation between the electrical power (X)
and the other 4 sensors (Y).
df_data.corr('temperature','electric power')

TABLE VII. CORRELATION VALUES

correlation – electric power
temperature pressure humidity vacuum

-0.948 0.518 0.389 -0.869

The electrical power seems to be highly correlated with
the temperature and vacuum and shows inverse
proportionality.

If we plot the obtained correlation values (Fig. 3) with the
help of HeatMap, it can be concluded that there is a high
correlation between the temperature and the electrical power,

as well as a high correlation between the electrical power and
the exhaust vacuum. Furthermore, AP and RH show a
positive correlation with EP, while AT and V show a strong
negative correlation.

corr = df_data.corr()
sns.heatmap(corr,annot=True,cmap='YlGnBu')

Fig. 3. Correlation HeatMap

The insight provided by the correlation helps in establishing
the model of the system.

Fig. 4. The result of the parameters displayed by the pairplot function

40

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 3, NO. 1, JUNE 2023, pp. 36-44

With the pairplot function, the bivariate distributions in
the data set for several pairs can be represented and analyzed.
When using the pairplot function (Fig. 4), the following can
be determined about our data set:

• strong positive correlation between AT and V (0.84):
this is called multicollinearity, which is generally not
good for systems, because our functions should be
independent of each other;

• strong negative correlation between AT and EP (-
0.95): if the ambient temperature increases, the
electrical energy output decreases;

• strong negative correlation between V and EP (-0.87):
if the exhaust vacuum is high, the emitted energy is
very low.

sns.pairplot(df_data)
With Apache Spark, we can also detect outliers by

running some functions and commands. During the test, we
will look at the values of all sensors. The task will be to find
all abnormal measurements from the DataFrame. To do this,
we need to calculate the upper and lower threshold values,
which are usually 3 standard deviations away from the mean
of the distribution.
 outlierthresholds = mean ± 3 * stddev (6)

Measurements above the upper limit or below the lower
limit will be considered as outliers.

In the following, only the code created for the values of
the pressure sensor will be described, but the same can be done
for the other sensors.
df_AP = sqlContext.read.
format('org.apache.spark.sql.cassandra').options(table='olddata2',
keyspace='spark_cass_data').load().select("id","AP").toDF("id","
pressure")

The mean and standard deviation of the sensor data can
then be determined. Then, using these, we create 2 new
columns for the DataFrame for the outlier thresholds (defined
by the formula indicated above).
df_AP_mean = df_AP.agg({'pressure' : 'mean'})
df_AP_stddev = df_AP.agg({'pressure' : 'stddev'})
df_AP_stat = df_AP_mean.
withColumn("Stddev",lit(df_AP_stddev.collect()[0][0])).withColu
mn("UpperLimit", lit(df_AP_mean.collect()[0][0] +
(df_AP_stddev.collect()[0][0] * 3))).withColumn("LowerLimit",
lit(df_AP_mean.collect()[0][0] - (df_AP_stddev.collect()[0][0] *
3)))

Next, we link the DataFrame containing our sensor data to
the new DataFrame. The result is a DataFrame with mean,
standard deviation, and upper and lower thresholds for each
sensor value.
joinDF = df_AP.join(df_AP_stat)

Based on this information, we can filter out rows that fall
outside the range enclosed by the specified outlier thresholds.
def detect_outlier(values, UpperLimit, LowerLimit):
... return (values < LowerLimit) or (values > UpperLimit)

udf_detect_outlier = udf(lambda pressure, UpperLimit,
LowerLimit: detect_outlier(pressure, UpperLimit, LowerLimit),
BooleanType())
outlierDF = joinDF.withColumn("isOutlier",
udf_detect_outlier(joinDF.pressure, joinDF.UpperLimit,
joinDF.LowerLimit)).filter("isOutlier")
outlierDF.count()
51

The results show that the detection of the outlier value
found 51 pressure values outside the upper and lower outlier
threshold intervals. From the results of the other sensor value
tests, we found that in addition to the pressure values, the
humidity values also contain outlier values. No outliers were
found for the other sensor values.
If we plot these sensor data using the box plot function, we get
the following diagrams, where we can see the outliers marked
with black dots (Fig. 5).

Fig. 5. Outlier Detection – box plot

Apache Spark's MLlib libraries also allow us to make
estimates. Linear regression is one of the most widely used
predictive modeling methods. The purpose of the analysis is
also to check whether the independent variable explains the
dependent variable.

We present three solutions for regression.

A. Matplot and Numpy
With the use of the matplot and numpy libraries, we can

easily plot our linear regression line and selected pressure
values. In order to make our diagram interpretable and easy to
see, we plot all 5-sensor values side by side, so we examine
them together.

The resulting graph (Fig.6) clearly shows how the data points
of the sensors are located relative to the linear line.

41

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 3, NO. 1, JUNE 2023, pp. 36-44

Fig. 6. Linear Regression

B. Determination of linear regression using PySpark
MLlib

To perform linear regression calculations, we need to
import three newer types of libraries into the PySpark
environment:
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.regression import LinearRegression
from pyspark.ml.evaluation import RegressionEvaluator

To construct a linear regression model, we use the full data
set, all 5 sensor values, from which the electric power will be
the label and the other four sensor values will match the
feature. Features are all independent variables that we believe
help predict the value of a dependent variable. The label is a
dependent variable, the value of which will be predicted by
our model.

VectorAssebler sums all the features into one vector,
resulting in a DataFrame.
vectorAssembler = VectorAssembler(inputCols = ['temperature',
'pressure', 'humidity', 'vacuum'], outputCol = 'features')
v_df_data = vectorAssembler.transform(df_data)
v_df_data = v_df_data.select(['features', 'power electric'])

We can then divide our data into two parts: train (70%)
and test (30%) data. We use the train data to teach our model
based on certain algorithms and then perform the prediction
on the test data.
splits = v_df_data.randomSplit([0.7,0.3])
train_df = splits[0]
test_df = splits[1]

After importing the LinearRegression package, we use it
as an algorithm for predictive modeling to create the model.
The fit() method is used to transmit training data for training
the model, so our model predicts the values of the test data.
lr = LinearRegression(featuresCol = 'features', labelCol='electric
power', maxIter=10, regParam=0.3, elasticNetParam=0.8)
lr_model = lr.fit(train_df)
lr_predictions = lr_model.transform(test_df)
lr_predictions.select("prediction","electric power","features")
.show(5)

TABLE VIII. PREDICTION OF ELECTRIC POWER VALUES

prediction electric power features
489.94377352648746 490.55 [1.81, 1026.92, 76….]
489.88982637976596 490.34 [2.34, 1028.47, 69….]

489.565899055038 488.69 [2,58, 1028.68, 69….]
486.27927130701426 485.2 [3.0, 1011.0, 80.14…]

482.1807303693204 489.38 [3.26, 996.32, 100….]

We use an evaluator to check how well our model predicts
the label, that is, in our case, the electric power values, and
whether selecting linear regression as an algorithm for our

model was a good choice. Regression model evaluation was
performed using the Spark ML RegressionEvaluator. The
metrics used are R² and RMSE (square root error).
lr_evaluator =
RegressionEvaluator(predictionCol="prediction",labelCol="electri
c power",metricName="r2")
print("R Squared (R2) on test data = %g" %
lr_evaluator.evaluate(lr_predictions))
R Squared (R2) on test data = 0.926259

test_result = lr_model.evaluate(test_df)
print("Root Mean Squared Error (RMSE) on test data = %g" %
test_result.rootMeanSquaredError)
Root Mean Squared Error (RMSE) on test data = 4.75025

The value of R² depends largely on how we select the
training and test data, so the result may vary based on this. In
our case, R² approaches 1, so it fits well. This means that the
sensor values selected in features explain and affect the label
(electric power) values. RMSE measures the differences
between the values estimated by the model and the actual
values.

When we plot the predicted values obtained during the
linear regression model compared to the test data set, which
was separated from the original data set using the regplot
function, we can observe the result shown in the figure below.
sns.regplot(x= lr_predictions, y=test_df, lowess=True,
line_kws={'color': 'red'})

Fig. 7. Representation of the predicted and test datasets

It can be observed that the predicted values of the electric
power are mostly located near to the line.

By drawing the regression diagram (Fig. 8), it is possible
to examine what trends can be observed for the monthly or
annual analysis, since the data set and the accompanying
documentation do not contain information about time stamps,
so the location of the data points within the 6-year time axis
cannot be precisely determined.
sns.regplot(x=df_data.index, y=df.EP, x_bins=72)
sns.regplot(x=df_data.index, y=df.EP, x_bins=6)

Fig. 8. Regression diagram

42

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 3, NO. 1, JUNE 2023, pp. 36-44

Testing for stationarity is frequently used in autoregressive
modeling. By applying an extended Dicky-Fuller test to the
electrical power data of the data set, its stationarity can be
examined. This means that, an insight into the time
dependence of the data can be obtained.
ADF Statistic: -66.527046
p-value: 0.000000
Critical Values:
 1%: -3.431
 5%: -2.862
 10%: -2.567
From the obtained result, it can be concluded that the data
show stationarity, since the value of the p-value is lower than
the significance level (0.05), so it has no trend and shows a
constant deviation over time.

C. Random Forest Regression
Similar to linear regression, we also applied the Random

Forest Regression technique to the data set, so it is possible
to perform both regression and classification tasks, that is,
several decision trees are combined to make predictions. The
importance of the model comes from its ability to measure
and rank the importance of input characteristics in predicting
the target variable.

rfr = RandomForestRegressor(n_estimators = 100, random_state =
0)
rfr.fit(X_train, y_train)

By plotting the test and predicted values together (Fig. 9), we
can see that the two sets of values show a very high level of
coverage.

Fig. 9. Representation of predicted values and the test data set as a result

of Random Forest Regression (orange: predicted, blue: actual)

From the obtained results, it can be seen that our Random
Forest Regression model shows better performance than
linear regression. The R2 value of 0.956 means that 95.6% of
the variation of the EP target variable can be explained by the
model, and the RMSE also gives a smaller value.

RMSE: 0.209
R2: 0.956

Therefore, it can be concluded that the use of Random Forest
Regression can be more effective compared to linear
regression.

V. CONCLUSIONS
 It is important to keep in mind that in the industry, the
processing and analysis of data and the extraction of useful
information by using some method or algorithm is an
important aspect. To this end, improvements and innovations

in data analysis and processing need to be continuously
developed and implemented.

 In this paper we have developed and presented an
alternative solution that allows us to obtain the most important
descriptive statistical parameters in a simple way, as well as
an alternative in the field of outlier detection and prediction.
For this, we used both Apache Cassandra and Apache Spark
open-source shared database and data processing systems,
which are playing an increasingly important role in the
intelligent, machine learning algorithms used for real-time
data analysis.

As a result of the statistical models used, we showed that
the analysis is consistent with the operating principles and
conclusions described in Tüfekci’s article [19].

The descriptive statistics and the graphical representations
of sensor data are in consent with the normal operation of the
combined cycle power plant.

 In the scope of this study, we conducted an evaluation of
the efficacity of linear and random forest models, as subsets
of regression methodologies, in generating more appropriate
and precise outcomes within the area of predictive analytics.
 We have demonstrated how Apache Spark and Cassandra
Architecture can be usefully used for time series analysis and
we created an environment in which other statistical analysis
can be performed.

As an enhancement, the goal is to integrate the Apache
Spark GraphX and Spark Streaming modules into our system
and create a unified user interface that allows to get the
metrics, errors, and predictions we want with a few clicks and
configurations. Also, we want to extend the used data
processing algorithms and try different time series data.

ACKNOWLEDGMENT
This work was supported by the Collegium Talentum

Programme of Hungary.

REFERENCES
[1] Várkonyi-Kóczy, A.R., J.Z. Szabó. "Soft Computing Based Methods

in Diagnostics" (Lágyszámítási módszerekkel támogatott diagnosztikai
módszerek), XXI. Nemzetközi Gépészeti Találkozó, OGÉT’2013, (V-
J. Csibi ed., 460 p.,, EMT, Cluj, Romania), Arad, Romania, Apr. 25-
28, 2013, pp. 427-430.

[2] Várkonyi-Kóczy, Annamária R., Péter Baranyi, and Ron J. Patton.
"Anytime fuzzy modeling approach for fault detection systems."
Proceedings of the 20th IEEE Instrumentation Technology Conference
(Cat. No. 03CH37412). Vol. 2. IEEE, 2003.

[3] Ferencz, Katalin, József Domokos, and Levente KovÁcs. "A statistical
approach to time series sensor data evaluation using Apache Spark
modules." 2022 IEEE 16th International Symposium on Applied
Computational Intelligence and Informatics (SACI). IEEE, 2022.

[4] Samu, Gabor, and A. R. Várkonyi-Kóczy. "Intelligent monitor for
anytime systems." IEEE International Symposium on Intelligent Signal
Processing, 2003. IEEE, 2003.

[5] Samu, Gabor. Intelligent monitor for anytime systems. Diss. 2005.
[6] Khan, Md Saikat Islam, et al. "IoT and Wireless Sensor Networking-

based Effluent Treatment Plant Monitoring System." Acta
Polytechnica Hungarica 18.10 (2021).

[7] Forkuor, Gerald, et al. "High resolution mapping of soil properties
using remote sensing variables in south-western Burkina Faso: a
comparison of machine learning and multiple linear regression
models." PloS one 12.1 (2017): e0170478.

[8] Ali, Iftikhar, et al. "Review of machine learning approaches for
biomass and soil moisture retrievals from remote sensing
data." Remote Sensing 7.12 (2015): 16398-16421.

43

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 3, NO. 1, JUNE 2023, pp. 36-44

[9] Montgomery, Douglas C., Elizabeth A. Peck, and G. Geoffrey
Vining. Introduction to linear regression analysis. John Wiley & Sons,
2021.

[10] Coulston, John W., et al. "Approximating prediction uncertainty for
random forest regression models." Photogrammetric Engineering &
Remote Sensing 82.3 (2016): 189-197.

[11] Peres, Ricardo Silva, et al. "IDARTS–Towards intelligent data analysis
and real-time supervision for industry 4.0." Computers in industry 101
(2018): 138-146.

[12] Wang, K.. “Intelligent Predictive Maintenance (IPdM) System –
Industry 4.0 Scenario.” WIT transactions on engineering sciences 113
(2016): 259-268.

[13] Ge, Zhiqiang. "Distributed predictive modeling framework for
prediction and diagnosis of key performance index in plant-wide
processes." Journal of Process Control 65 (2018): 107-117.

[14] Wu, Dazhong, et al. "A fog computing-based framework for process
monitoring and prognosis in cyber-manufacturing." Journal of
Manufacturing Systems 43 (2017): 25-34.

[15] Magadán, L., et al. "Low-cost real-time monitoring of electric motors
for the Industry 4.0." Procedia Manufacturing 42 (2020): 393-398.

[16] Katalin, Ferencz and József, Domokos. "Ipari IoT szolgáltatások és
nyílt forráskódú rendszerek áttekintése: Overview of Industrial IoT
services and open source systems." Energetika-Elektrotechnika–
Számítástechnika és Oktatás Multi-konferencia (2020): 69-74.

[17] Ferencz, Katalin, and József Domokos. "Rapid Prototyping of IoT
Applications for the Industry." 2020 IEEE International Conference on
Automation, Quality and Testing, Robotics (AQTR). IEEE, 2020.

[18] https://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
[19] Pınar Tüfekci, Prediction of full load electrical power output of a base

load operated combined cycle power plant using machine learning
methods, International Journal of Electrical Power & Energy Systems,
Volume 60, September 2014, pp. 126-140

44

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 3, NO. 1, JUNE 2023, pp. 36-44

