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Abstract—This paper focuses on the multi-objective 

optimization of a sewer network that serves a medium-sized 

Romanian city, with a population of 250,000 residents. The 

sewer network is modeled using BSMSewer software package. 

The obtained results are based on numerical simulations with 

the optimization algorithm considering two performance 

criteria: the volume of overflow and the quality of the 

overflowed wastewater. For optimization, two approaches that 

use a controlled elitist genetic algorithm were employed: a 

multi-objective optimization and a two-steps multi-objective 

optimization. Results analysis involved comparing them with a 

scenario where each performance criterion was separately 

minimized. Additionally, a comparison was made to the 

situation where the sewer network operated without a control 

system, meaning the valves were fully open and the pumps were 

running maximum capacity. 

Keywords—wastewater, sewer network, multi-objective 

optimization, controlled elitist genetic algorithm 

I. INTRODUCTION 

The issue of wastewater treatment has become crucial at 
the moment, being directly related to environmental 
protection. The main objectives are to avoid discharges to 
prevent floods and improve the quality of water discharged 
into natural receptors (rivers, lakes, groundwater etc.), which 
means increasing the efficiency of the operating of sewer 
networks, SN, and wastewater treatment plants, WWTP, 
(discharged water quality parameters must be in accordance 
with the legislation specific to this field). This problem can be 
treated separately (increasing the efficiency of the sewer 
networks and, separately, of the wastewater treatment plants), 
but also in an integrated way considering both entities. 

The literature reports numerous approaches regarding the 
modeling and control of the sewer networks. Thus, regarding 
the sewer network modeling, various approaches can be 
found, from simplified discrete models [1] that are not 
requiring a lot of computational effort, to more complex 
models that are able to model the wastewater flow with its 
loads: particulate and soluble chemical oxygen demand, 
ammonia and phosphate and phenomena that are taking place 
in the pipes and in the soil [2]. Beside deterministic models of 
the sewer networks, stochastic quality models, that are data-

driven, can be found. In [3] a stochastic model implemented 
in InfoWorks that is able to predict flow and quality profiles 
is proposed. A similar approach [4], being able to predict flow, 
nutrient and temperature changes is used to quantify the 
impact of water saving strategies. 

The sewer network control strategies are important 
because they assure low-cost and safe operating of the sewer 
network. Usually, the main goal of the sewer network control 
systems is to reduce the pollution caused by overflows by 
reducing the quantity of discharged water or the quantity of 
pollutants discharged during overflow events. In [5] a generic 
methodology for optimal control of the sewer networks is 
proposed, a methodology that can be applied when a state-
space model of the system is available. Other approaches 
based on simplified models consider only binary commands 
on the sewer network tanks outlet and use Binary Hybrid 
Topology Particle Swarm Optimization in an optimal control 
structure [6] or in a predictive control structure [7]. 

Fuzzy logic based control structure has been used in [8] to 
reduce the sewer network overflows effects. For each of the 
storage tanks, the fuzzy logic controller uses the levels in the 
storage tanks, the inflow and the downstream tank level to 
compute the outflow rate, aiming at improving the overflow 
in terms of pollution loads. The paper [9] took a step forward, 
by adjusting the membership functions of the fuzzy logic 
controller by using a genetic algorithm in order to provide the 
best results, leading to a 25% overflow volume decrease, 
compared to membership functions provided by human 
experts. 

In [10] a multi-objective optimization algorithm based on 
NSGA II aims at minimizing the overflow pollution load and 
the operating cost of sewer network pumps. 

In the present paper, the authors aim to optimize the 
operating of a sewer network considering two performance 
criteria (multi-objective optimization) consisting of the 
volume of overflows (𝑉𝑜𝑣𝑓 ) and the quality of overflowed 

water (𝑂𝑄𝐼 ). The sewer network considered in the paper 
serves a medium-sized city in Romania with a population of 
250,000 inhabitants. It was modeled in the BSMSewer 
simulation environment. The analysis of the obtained results 
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was made by comparison with the situation in which the 
optimization aimed at separately minimizing each 
performance criteria, by reporting at the case when the sewer 
network operates without control system (the valves were 
fully open, and the pumps were running at 100% capacity). 

The paper is structured on 4 sections as follows: the second 
section presents the structure and the characteristics of the 
sewer network, the third section deals with the multi-objective 
optimization methods and the results analysis and the last 
section is dedicated to the conclusions. 

II. STRUCTURE AND CHARACTERISTICS OF THE SEWER 

NETWORK 

In Fig. 1 the structure of the sewer network is presented. 
The sewer network includes seven tanks that collect polluted 
water from 5 collecting areas. The tanks no. 1 - 4 collect 
domestic polluted water and rainwater from urban areas, while 
the tank no. 5 collects wastewater from an industrial area 
(specifically from the brewery industry). The tanks no. 6 and 
7 are storage tanks, the last one being connected to the 
wastewater treatment plant. A detailed description of the 
sewer network can be found in [11]. 

It is considered that the connection between the tanks is 
made both gravitationally (between tanks 1 and 7, 2 and 7, 3 
and 6, 5 and 6), and by using pumping stations (the 
communication between tanks 4 and 6 and tanks 6 and 7).  

The notations from Fig. 1 are the following: 

• TKi, 𝑖 = 1. . .7, the tank i; 

• di, 𝑖 = 1. . .5 , the inflow of the tank i from the 
corresponding collecting area; 

• ui, 𝑖 = 1. . .7, is the outflow of the tank i; 

• qover,i, 𝑖 = 1. . .7, represents the overflows of the tank i. 

For each tank it was also considered: 

• 𝑉𝑖 = 0.05 ∙  𝑝𝑒𝑖 – The volume of the tank i (0.05 m3 for 
each inhabitant of the collecting area served by the tank i), 
𝑝𝑒𝑖 – the number of inhabitants of the collecting area i). 

• 𝑈𝑚𝑎𝑥,𝑖 = 3 ∙ 𝑄𝑝𝑒 ∙ (𝑝𝑒𝑖 + ∑ 𝑝𝑒𝑗
𝑛
𝑗=1,𝑢𝑗⊂𝑑𝑖

)  – Maximum 

flow at the output of the tank i – 3 times higher than the 
average wastewater production of the population served 
by the tank i and the tanks whose outflow is part of the 
influent of tank i ( 𝑄𝑝𝑒 = 0.15 𝑚3/𝑑𝑎𝑦  - the average 

domestic water (production/inhabitant/day). 

The surface and the number of inhabitants corresponding 
to each collecting area are given in TABLE I. The volume 
values and maximum possible outflows can be found in 
TABLE II. The influent comes from the 5 collecting areas and 
contains the 3 components mentioned above (domestic 
polluted water, rainwater and industrial water). TABLE III 
presents the average flows and loads corresponding to the five 
collecting areas. 

TABLE I.  COLLECTING AREAS CHARACTERISTICS 

Collecting 
area no. 

Surface of the 
collecting area  

[ha] 

The population served 
[number of inhabitants] 

1 2500 75000 

2 5000 50000 

3 6000 40000 

4 7500 60000 

5 3500 25000 

TABLE II.  TANK CHARACTERISTICS 

Tank 
no. 

Volume 
[m3] 

Maximum outflow 
[m3/day] 

1 3750 33750 

2 2500 22500 

3 2000 18000 

4 3000 15000 

5 3750 18750 

6 2083 25000 

7 2500 112500 

 

Fig. 1. The general scheme of the sewer network 
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TABLE III.  MEDIUM LOADS AND FLOW FOR EACH COLLECTING AREA 

Collecting 
area no. 

CODsol 
[kg/day] 

CODpart 
[kg/day] 

NH4+ 
[kg/day] 

𝑷𝑶𝟒
𝟑−  

[kg/day] 
Flow 

[m3/day] 

1  720.71 4607.6 220.84 57.05 7786.2 

2  487.97 3104.7 143.80 38.26 5283.0 

3  421.18 2693.0 121.91 30.95 4400.5 

4 589.17 3789.9 182.30 44.36 6369.4 

5 2742.60 2051.3 132.67 61.22 4771.9 

III. THE SEWER NETWORK OPTIMIZATION 

A. Results obtained in “no control” operating regime 

As mentioned in section I, the first simulations results have 
been obtained without using any control system. All valves at 
the tank outputs have been considered fully opened, while all 
the pumps were running at 100% as long as the wastewater 
level in the tank was over 0.5 meters. The results from TABLE 
IV have been obtained. 

TABLE IV.  “NO CONTROL” RESULTS 

Tank 
no. 

𝑽𝒐𝒗𝒇 [m3/year] 𝑶𝑸𝑰 

1 0 0 

2 22729 192 

3 50202 743 

4 55134 1365 

5 0 0 

6 241600 3830 

7 0 0 

global 369665 6131 

 

B. Results obtained in “Vovf optimization” and “OQI 

optimization” operating regimes 

In this case, the optimization was done in relation to each 
performance criteria. In [12] 5 options for choosing the form 
of the controls for optimization are presented. It should be 
noted that only the controls corresponding to the tanks 3, 4 and 
5 outputs are considered for the optimization. The best results 
were obtained for the control presented in Fig. 2. 

 

Fig. 2. The considered control form 

As it can be seen the controls vary in time, depending on 

the liquid level in the tank as follows: if the liquid level in the 

tank is below a certain level ℎ𝑖,𝐿𝐼𝑀, the valve/pump control 

will be 𝑢𝑖,𝐵, and if the level is above ℎ𝑖,𝐿𝐼𝑀 then the control 

will be considered 𝑢𝑖,𝐴. No inequality constraints for 𝑢𝑖,𝐴 and 

𝑢𝑖,𝐵 has been considered. This way, when the liquid level is 

getting over the limit, the new control value can be higher 

than the old one in order to make the overflow of the current 

tank smaller or it can be lower in order to help the tank whose 

inflow is the outflow of the current tank to overflow less. To 

prevent the control quickly changing when the tank level is 

around ℎ𝑖,𝐿𝐼𝑀, a hysteresis has been considered around this 

level. 
The parameters of the control have been determined 

through the optimization procedure (genetic algorithm), the 
structure of the chromosome being the one presented in Fig. 
3. 

 

Fig. 3. The structure of the chromozome 

Optimizing the volume of overflow resulted in the 
following optimal solution: 

[

ℎ3,𝐿𝐼𝑀
∗ = 3.507 ℎ4,𝐿𝐼𝑀

∗ = 4.3294 ℎ4,𝐿𝐼𝑀
∗ = 2.0954

𝑢3,𝐴
∗ = 0.6997 𝑢4,𝐴

∗ = 0.6910 𝑢5,𝐴
∗ = 0.51

𝑢3,𝐵
∗ = 0.8423 𝑢4,𝐵

∗ = 0.8927 𝑢5,𝐵
∗ = 0.9836

] (1) 

 

while optimizing the overflow quality index resulted in the 
following optimal solution: 

[

ℎ3,𝐿𝐼𝑀
∗ = 3.393 ℎ4,𝐿𝐼𝑀

∗ = 0.8911 ℎ5,𝐿𝐼𝑀
∗ = 3.9285

𝑢3,𝐴
∗ = 0.5510 𝑢4,𝐴

∗ = 0.8598 𝑢5,𝐴
∗ = 0.6190

𝑢3,𝐵
∗ = 0.9157 𝑢4,𝐵

∗ = 0.8414 𝑢5,𝐵
∗ = 0.9961

] (2) 

 

 The performance criteria values resulted by optimization 
are presented in TABLE V (when minimizing 𝑉𝑜𝑣𝑓) and in 

TABLE VI (when minimizing 𝑂𝑄𝐼). 

TABLE V.  “MIN(𝑉𝑜𝑣𝑓)” RESULTS 

Tank 
no. 

𝑽𝒐𝒗𝒇 [m3/year] 𝑶𝑸𝑰 

1 0 0 

2 22759 193 

3 90614 1197 

4 85118 1819 

5 21207 727 

6 24667 318 

7 0 0 

global 244365 4254 

TABLE VI.  “MIN(𝑂𝑄𝐼)” RESULTS 

Tank 
no. 

𝑽𝒐𝒗𝒇 [m3/year] 𝑶𝑸𝑰 

1 0 0 

2 22772 193 

3 156472 1982 

4 69088 1526 

5 9111 299  

6 17609 280 

7 0 0 

global 275052 4280 

47

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 3, NO. 1, JUNE 2023, pp. 45-50

 
 



C. Results obtained in “multi-objective optimization” 

operating regimes 

In this section a multi-objective optimization of the sewer 
network has been done by minimizing two of the performance 
criteria: 𝑉𝑜𝑣𝑓  and 𝑂𝑄𝐼 . For optimization two methods were 

approached, both based on a controlled elitist genetic 
algorithm [13], as follows: 

1. Multi-objective optimization; 

2. Multi-objective optimization in two steps; 

1) Multi-objective optimization 

 It has been used to compute a set of points on the Pareto 

Front. The algorithm has the following characteristics: 

• it will stop if the maximum number of generations 

(100) is reached or if it senses that no improvements 

of the population has been made in the last 30 

generations; 

• the chromosome structure number of genes and 

structure is given in Fig. 3; 

• the number of chromosomes of the population has 

been chosen to be 20; 

• the initial population is generated randomly using 

uniform distributions that are in the range of each 

gene; 

• single point crossover operator; 

• uniform mutation operator with a mutation probability 

equal to 0.05; 

• the parent chromosomes are chosen using a 

tournament mechanism: from the entire population, a 

4 individuals set is randomly chosen. The best 

individual from that set becomes a parent; 

• the values of the two objective functions are linearly 

normalized: 

𝑉𝑜𝑣𝑓
∗̅̅ ̅̅ ̅̅ =

𝑉𝑜𝑣𝑓
∗

𝑉𝑜𝑣𝑓,𝑁𝐶
 () 

 and 

 𝑂𝑄𝐼∗̅̅ ̅̅ ̅̅ ̅ =
𝑂𝑄𝐼∗

𝑂𝑄𝐼𝑁𝐶
 ()  

where 𝑉𝑜𝑣𝑓,𝑁𝐶 = 369665 and 𝑂𝑄𝐼𝑁𝐶 = 6131 are the values 

of the objective functions when “no control” regime is 

considered. 

At each generation, the algorithm follows these steps: 

1. Select parents from the current population by using the 

tournament mechanism; 

2. Create 16 offspring by using the crossover and 

mutation operators; 

3. Calculate the fitness of the offspring; 

4. Combine the offspring with the current population in 

an extended population; 

5. For each of the chromosomes in the extended 

population, calculate the rank and the crowding 

distance [13] 

6. Use the extended population as the next generation 

population by trimming it to 20 individuals. 

By running the optimization algorithm, the points on the 
Pareto Front graphically represented in Fig. 4 have been 
obtained. 

 

Fig. 4. Normalized points on Pareto Front 

It can be noticed that the normalized values of OQI of the 
pareto-optimal solutions found by the algorithm varies 
between 0.7498 and 0.7588, while the normalized values of 
the Vovf varies between 0.7588 and 0.8048. 

There are multiple methods for choosing the best 
compromise from the Pareto Front, depending on the problem 
[14]: Laplace's criterion, Wald's criterion, Hurwicz’s 
criterion etc. For this problem, selecting the solution to be 
used will be made by using Nash Bargaining Solution [15]. 
The advantage of this method is that it satisfies the 
monotonicity requirement, a principle of fair division and it is 
Pareto efficient. The chosen solution is the one that 
maximized the area of the rectangle defined by the solution 
point in the objective space and the point of disagreement, D 
(Fig. 5). 

 

Fig. 5. Choosing the optimal solution by method Nash Bargaining Solution 

Therefore, the optimal solution obtained with this method 
is: 
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[

ℎ3,𝐿𝐼𝑀
∗ = 2.6064 ℎ4,𝐿𝐼𝑀

∗ = 1.6835 ℎ5,𝐿𝐼𝑀
∗ = 4.1865

𝑢3,𝐴
∗ = 0.6889 𝑢4,𝐴

∗ = 0.7109 𝑢5,𝐴
∗ = 0.9011

𝑢3,𝐵
∗ = 0.9927 𝑢4,𝐵

∗ = 0.7684 𝑢5,𝐵
∗ = 0.7793

] (5) 

 

with the following values of the objective functions: 𝑉𝑜𝑣𝑓
∗ =

296689  representing a decrease of 19.74% and 𝑂𝑄𝐼∗ =
4616 representing a decrease of 24.71% compared to the “no 
control regime” values. 

The genetic algorithm has been run 5 times obtaining the 
solutions from TABLE VII. 

TABLE VII.  5 RUN RESULTS 

Run no. 𝑽𝒐𝒗𝒇
∗  𝑶𝑸𝑰∗ 

1 296689 4616 

2 281674 4971 

3 297676 4798 

4 281674 4971 

5 297569 4768 

 

From TABLE VII, mean values of each of the objectives 

can be calculated: 𝑚𝑒𝑎𝑛(𝑉𝑜𝑣𝑓
∗ ) = 291056  and 

𝑚𝑒𝑎𝑛(𝑂𝑄𝐼∗) = 4824.  

Comparing the obtained results with the ones obtained in 
[12] when the optimization has been made separately for each 
of the performance criteria, it can be seen that the solution 
found by using the multi-objective optimization is worse than 
the solutions found when only one of the performance criteria 
was minimized. This is because the multi-objective 
optimization algorithm tends to get trapped in local minimums 
and because it provides only a small portion of the Pareto 
Front, due to the fact that the initial population is randomly 
chosen and because the algorithm is an elitist one. 

2) Multi-objective optimization in two steps 

In [16] the following optimization method has been 
proposed. Firstly, single-objective optimization will be used 
to separately minimize both performance criteria, then the 
obtained solutions will be included in the initial population of 
the multi-objective optimization algorithm (Fig. 6). 

 

Fig. 6. The optimization method 

To have the same number of fitness function evaluations, 
the maximum number of generations for each of the 
optimizations have been considered according to TABLE 
VIII. 

TABLE VIII.  MAXIMUM NUMBER OF GENERATIONS 

Type Criteria Maximum number 
of generations 

Single-Objective min(OQI) 25 

Single-Objective min(Vovf) 25 

Multi-Objective min(OQI, Vovf) 50 

Firstly, 𝑂𝑄𝐼  indicator has been minimized. The 

normalized optimal value found by the algorithm was 𝑂𝑄𝐼∗̅̅ ̅̅ ̅̅ ̅ =
0.7438  (𝑂𝑄𝐼∗ = 4560). Secondly, 𝑉𝑜𝑣𝑓  indicator has been 

minimized. The normalized optimal value found was 𝑉𝑜𝑣𝑓
∗̅̅ ̅̅ ̅̅ =

0.7037  ( 𝑉𝑜𝑣𝑓
∗ = 260123 ). The evolution of the best 

normalized fitness for both objective functions can be seen in 
Fig. 7. 

 

Fig. 7. Fitness function evolutions  

Finally, the multi-objective optimization algorithm has 
been run for 50 generations, with the solutions of the two 
single-objective optimizations included in the initial 
population. The rest of the individuals in the initial population 
were randomly generated. 

By running the optimization algorithm, seven points on the 
Pareto Front graphically represented in Fig. 8 have been 
obtained. It's interesting that all seven points have the same 
coordinates. 

 

Fig. 8. The points of the Pareto Front 

The following optimal solution has been obtained: 

[

ℎ3,𝐿𝐼𝑀
∗ = 1.3735 ℎ4,𝐿𝐼𝑀

∗ = 3.7458 ℎ5,𝐿𝐼𝑀
∗ = 1.9283

𝑢3,𝐴
∗ = 0.7775 𝑢4,𝐴

∗ = 0.5634 𝑢5,𝐴
∗ = 0.6545

𝑢3,𝐵
∗ = 0.9264 𝑢4,𝐵

∗ = 0.9993 𝑢5,𝐵
∗ = 0.9807

] (6) 
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The values of the objective functions are: 𝑉𝑜𝑣𝑓
∗ = 259206 

representing a decrease of 29.88% and 𝑂𝑄𝐼∗ = 4467 
representing a decrease of 27.14% compared to the “no 
control regime” values. 

An explanation for the overlap of the seven points would 
be that the two criteria are correlated and minimizing one 
leads to minimizing the other. 

IV. CONCLUSIONS 

In conclusion, this paper deals with multi-objective 
optimization of a sewer network in terms of volume of 
overflow and overflow quality index. The multi-objective 
algorithm has been implemented by using a genetic algorithm 
and computes the Pareto Front. The best compromise form the 
Pareto Front is chosen by using Nash Bargaining Solution. 
The multi-objective algorithm, because it is an elitist 
algorithm and the initial population is randomly generated, 
tends to get trapped in local minimums and provides only a 
small portion of the Pareto Front. Therefore it provides worse 
results than when performing single-objective optimization 
with respect to the volume of overflow. To overcome this, a 
combination of single-objective and multi-objective 
optimization has been performed, keeping the same number 
of evaluations of the fitness functions, obtaining better results 
in terms of both objective functions than when using only 
multi-objective optimization or only single-objective 
optimization. However, this algorithm also provides a small 
portion of the Pareto Front. 

Analyzing the results of the hybrid single-objective/multi-
objective algorithm, another conclusion is that there is a strong 
connection between the volume of overflow and overflow 
quality index. Minimizing one of them lead to the 
minimization of the other one, this leading to a narrow Pareto 
Front. However, due to the geometry of the objective-space, 
single-objective optimization of the volume of overflow 
provides better results in terms of both objective functions 
than when performing single objective optimization of the 
quality. 
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