
Object Detectors as Input for Reinforcement
Learning Agents

Benjamin van Oostendorp
DigiPen Institute of Technology

Redmond, WA, United States of America
ben.vanoostendorp@digipen.edu

Abstract—In traditional reinforcement learning applications
with images as input, the observation for the agent to learn
from, is an image. In these models, a Convolutional Neural
Network (CNN) is typically used to extract the features before
for the learning process, in order to maximize the cumulative
reward. In this paper, a different approach for pre-processing
the input for reinforcement learning agents is considered. The
proposed approach uses object detectors instead instead of CNNs,
and converts each input image into bounding boxes and object
locations for the agent to learn from.

Index Terms—object detection, reinforcement learning, deep
q-learning

I. INTRODUCTION

In reinforcement learning, generalization of agents and
models allows an agent to perform similar tasks in a different
environment. Often, the lack of generalization capability pre-
vents tuned agents from being able to complete similar tasks
in different environments, or even similar tasks in slightly
different environments [1]. Often, AI agents have to be made
specifically for the environment and tuned accordingly, even
for environments that are very similar. Other times, the new
environments that an agent is proposed to learn, doesn’t have
a direct link to the agent. For example, in self driving cars,
the driver of the car does not have direct access to the physics
of the universe, or in video games, the player doesn’t have all
access to the memory or debug tools.

Object detectors [2] can handle these problems, since rules
can be derived from bounding boxes based on human expe-
rience in the environment. This allows agents to extend to
environments where reward functions are not provided. This
approach also treats observations similar to humans; instead
of seeing every individual pixel in an image, it focuses on the
specific objects within the image. This method may promote
quicker learning as there is an inherent amount of information
embedded in the observation.

Another potential advantage to this approach is explain-
ability. Traditionally, it is very difficult to interpret why a
Convolutional Neural Network (CNN) makes the decisions
it does. While this approach does not currently attempt
to explain the actions of the agent, using techniques such
as mutual-information-guided linguistic annotations (MILAN)
[3] or fuzzy-based techniques could lead us to understand the
reasoning behind the agent’s actions.

In this paper, first the environments are introduced, then the
implementation is analyzed, and finally the results and viability
of the method are discussed.

II. METHODOLOGY

While there is a lot of research on classic reinforcement
learning environments, the goal of this approach is to be able
to tackle more complex problems with the ability to create
logical rules for the system from objects in the scene. The
games of choice for the proposed agent to learn are Shovel
Knight: Shovel of Hope [4] (referred to as ”Shovel Knight”)
and Super Mario Bros.: The Lost Levels [5] (referred to as
”Mario”).

Shovel Knight is selected as it appeared as an interesting
task since there are no methods to gain direct access to its
internal variables. The only information from the game that
can be gathered is images as frames from game play. It poses
an unique challenge of needing to create a custom reward
function as well as not being directly accessible through the
environment. Traditionally, the environment is created to be
directly controlled, like in OpenAI’s Gym [6]. In these envi-
ronments, the agents can directly interact and the environment
”waits” for the agent to take actions, pausing simulation until
moving to the next state. Shovel Knight is a more traditional
game in the sense that a player would interact with the game
via a keyboard or controller, process the action within the
game, and display the next state for the player to interpret.

Mario, however, has a OpenAI gym implementation [7] but
is a quite complicated video game and has not been the subject
of much exploration in reinforcement learning.

Training data for the object detector is collected by captur-
ing screenshots every few seconds, and then labeling bounding
boxes and classes manually using MakeSense.ai [8]. The
custom training data set for the proposed approach was created
as part of this project.

A. Object Detection

There are many object detectors and classifiers in the
literature, such as Region-based CNN (RCNN) [2], Spatial
Pyramid Pooling (SPP-Net) [9], Single Shot Detector (SSD)
[10], and You Only Look Once (YOLO) [11]. Each of these
detectors complete two tasks: finding an arbitrary number of
objects in a given image, and then classify each object and
estimate its position and size with a bounding box. For the

 9

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 3, NO. 2, DECEMBER 2023, pp. 9-14 

Cite as: B. van Oostendorp, “Object Detection for Reinforcement Learning Agents”, Syst. Theor. Control Comput. J., vol. 3, no. 2, pp. 9–14, Dec. 2023. 
DOI: 10.52846/stccj.2023.3.2.51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 1. RAINBOW Agent Architecture

proposed framework, YOLOv5 [12] is adopted. The main
reason for choosing YOLOv5 is that YOLOR [13] was not
available, and after analyzing several models such as RCNN,
Fast RCNN [14], Faster RCNN [15], and YOLOv4 [16],
YOLOv5 outperformed the other models in terms of accuracy
and inference time.

The specific version of YOLOv5 used is the YOLOv5l, the
second largest version of the full YOLOv5 algorithm. This
version handles images that are 640x640 in size, and has an
average inference time of 460 milliseconds. This version is
chosen as the accuracy and speed were both adequate. A
different network configuration could be chosen for faster
inference times or to handle images of different sizes.

B. Agent

The reinforcement learning agent (referred to as ”the agent”)
is built using PyTorch [17]. The agent is a an implementation
of the RAINBOW agent [18], consisting of a double Q-
learning architecture [19], a prioritized replay [20], dueling
networks [21], multi-step learning [22], distributional rein-
forcement learning [23], and noisy nets [24]. Each network
consists of 4 noisy layers consisting of 512 neurons each with
2 noisy layers consisting of 512 neurons for both the value
and action advantage portion of the dueling network, displayed
in Fig. 1. Each layer uses the ReLU activation function and
the final output uses the Softmax activation function. The
optimizer is PyTorch’s implementation of ADAM [25], and
the loss calculation is Mean Squared Error.

In order to compare the proposed method to the more tradi-
tional CNN Deep Q-learning environment, both the proposed
approach and the CNN-based approach were implemented in
the Mario environment. For the CNN-based Mario implemen-
tation, the CNN architecture, nicknamed the ”NatureCNN”
based on the architecture from [26], is used in place of
YOLOv5. This is useful so the methods can be compared.

C. Action

Since Shovel Knight does not allow direct access into the
game, an outside method to take actions must be employed.
This is done by creating a virtual controller with vgamepad
[27]. Vgamepad works by using the ViGEM C++ framework
[28] with Python bindings, allowing the agent to take actions
within Shovel Knight.

Mario does contain an OpenAI gym interface, so the process
of obtaining states and taking actions is handled within the
implementation of the environment itself.

Fig. 2. Makesense.ai data creation

III. IMPLEMENTATION

A. Object Detection Training

The YOLOv5 portion of the framework is trained using
screenshots taken from the game, manually labeled with Make-
Sense.ai, as shown in Fig. 2, and exported in COCO format
[29]. The whole data set consists of 121 images processed this
way with images being captured throughout the first level in
Shovel Knight. The YOLOv5 network is then trained first and
separately from the agent until the accuracy of each class was
at least 80

For Mario, the same method is used to train the YOLOv5
network, but with 70 images instead. The task of manually
labelling training data can be a considerable time investment,
therefore a balance between time-commitment and accuracy
has been considered.

B. Environment Observation Handling

The first part of handling the observation is getting the
images during game-play in Shovel Knight. The approach
used was obtaining screenshots of the game using mss [30],
a Python package that captures screenshots and saves them as
PNG images. Next, the image must be reduced in size in order
to be processed by the YOLOv5 network, from 1280x720 to
640x320. This is done with openCV [31] by down-scaling
the image with nearest-neighbor interpolation. With the new
image resized, the image is then letter-boxed, putting black
bars around the image, to make it a square 640x640 image
to match the required input size. Next, the image is passed
to the Graphics Processing Unit (GPU) so that it is on the
same device as the agent. The image is then converted to
floating point numbers, normalized between 0 and 1, and an
extra dimension is added to match the input requirements
of YOLOv5. Finally, the adjusted image is passed through
YOLOv5 and Non-Maximum Suppression (NMS) [32] to
receive the required inferences. The layout of each object in
the inference is the left, top, right, and bottom positions of
the bounding box, followed by the confidence and class of the
object, as shown in Fig. 3.

Once inferences are obtained, they must be transformed into
a format that the agent will understand. In this implementation,
the agent is allowed to know the locations of 150 objects.

 10

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 3, NO. 2, DECEMBER 2023, pp. 9-14 

 

 
 



Fig. 3. Example of bounding box data

Fig. 4. Example of object ordering

This number can be tuned to fit different environments. The
first step in this process is to sort all of the objects from left
to right, then bottom to top. This is done to keep objects in
similar positions as they were previously shown in. Next, all
of the objects are extracted from the inferences. This is done
by extracting objects based on class, and then discard the
class and confidence value for the object. For each class, the
bounding boxes are flattened and then stored in pre-determined
locations of the observation array, as shown in Fig. 4. This is
done such that objects of the same class always appear in the
same location in the observation for every state. Once all of
the classes have been moved into the observation array, it is
normalized between 0 and 1, as the object detector’s inferences
are pixel locations rather than relative image locations. This
is done for both Shovel Knight and Mario object detection
environments.

The final step in creating the observation for Shovel Knight
is calculating the health of the agent. The agent’s health is
detected directly by interpreting pixel values at the location
where health is displayed in the game. The health is is then
augmented onto the bottom of the observation array, and
normalized between 0 and 1.

C. Action Handling

Now that the observation is constructed for Shovel Knight, it
gets passed to the agent to output the action to take. The agent
computes the Q-values of the observation for each action, and
returns the index of the action with the maximum Q-value.
This action is an integer value between 0 and the count of
all possible actions, and must be interpreted into controller
inputs. This is done by using a bit-wise AND for each button
the agent can press. Each button acts as a mask of the action
passed in. If the bit is set, the button is pressed, and if it is not
set, the button is released. After every button is parsed from
the action, the state of the virtual controller is updated.

D. Reward Calculation

One of the most difficult portions of handling environments
that do not already have reward functions is writing a custom
reward function. One major benefit to this approach is human-
like rules can be generated for the environment. As a player of
the game, relationships between objects in the image can be

Fig. 5. Reward calculation example for Shovel Knight

used to generate a reward function, and methods like reward
shaping [33] can be used to improve upon the reward function.

For the case of Shovel Knight, progression is derived by
movement and health. The first basic check is if the Knight is
dead, and if so, return a large negative reward. If the Knight is
not dead, but it is not found in the current frame, use the health
gain/loss as a reward. Then, one of two things is done based
on if the Knight is in the center of the screen or off to the
sides. In Shovel Knight, the camera scrolls/follows along with
the Knight, usually keeping it in the center. However, there
are some cases where this is not true. When the Knight is not
centered, calculating progression is trivial as the movement
can be calculated by subtracting the previous location of the
Knight from the current position. In the case where the Knight
is centered in the frame, two candidate objects are found.
Candidate objects are two objects with similar size and similar
position. The tolerance for the difference in position of these
objects is relatively small, but non-zero. Once two objects have
been found, the difference between the current and previous
object’s position is used to determine movement.

In Fig. 5 the process of object tracking is shown to de-
termine progression. On the left is the previous frame, and
on the right is the current frame. The sand block, outlined
with a red box, is found to be of similar size and in a similar
position, and the progress the agent makes is the difference
between the current sand block’s location and the previous
sand block’s location.

The final portion of the reward calculation is to compute
the weighted sum of the progression and health with tunable
parameters. The current implementation uses 30% of the health
reward and 70% of the progression reward.

The reward calculation for Mario is provided within the
implementation of the gym environment, based on memory
locations for Mario to determine forward or reverse progres-
sion. This reward is then normalized between -1 and 1.

IV. RESULTS

The agent for Shovel Knight is trained for 1000 episodes
consisting of a maximum of 1000 frames each, with the reward
for each episode being recorded. Upon reaching the end of
an episode or dying, the agent resets the environment to the
beginning of the first stage, and the next episode begins.

The agent for Mario was trained for 1 million frames.
Each episode is determined from the rules inside the Mario
environment, where each level is given a number of time units,
and once those time units run out, Mario dies. The agent is
given three lives (unless earning more), and the episode is over

 11

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 3, NO. 2, DECEMBER 2023, pp. 9-14 

 

 
 



Fig. 6. Reward per episode for Shovel Knight

Fig. 7. Episode length for Shovel Knight

once Mario runs out of lives. Both the traditional approach
and object-detector approach is trained and compared, with
the traditional agent utilizing RAINBOW agent with a CNN
as a feature extractor.

V. DISCUSSION

To show the learning of the agents, the rolling mean reward
over 10 episodes is collected as well as the length of each
episode.

Fig. 8. Reward vs wall time for Mario

Fig. 9. Episode length for Mario

Fig. 10. Reward per episode for Mario

From Fig. 6 it can be seen that over the course of training,
the agent is learning the environment with a steadily increasing
reward, and the length of each episode is slightly decreasing
as shown in Fig. 7. This hints that the agent getting further
progress in each episode, and encountering new problems it
has not yet faced and not having the experience of surpassing
them. Granted, the length of these episodes does not decrease
by a large magnitude. Better metrics such as distance covered
and health over time in the episode will be tracked in future
work to better determine training of the agent.

For Mario, there is a pretty distinct picture of the object-
based method reaching a moment where it begins to learn
the environment much quicker. From Fig. 10, for the first
800,000 episodes, it is learning with about the same rate as
the traditional agent, but obtaining a slightly lower reward.
This indicates that the agent is more than likely to die earlier
in the episode than the traditional method, as hinted at in
Fig. 9. Then, around episode 800,000 it begins to rapidly
gain more reward than the CNN-based method. This could be
due to the fact that there is inherent information stored inside
the observation, so the network does not have to account for
positions of filtered items as in the CNN method. This may
allow for faster relationship learning.

The final comparison between the object-based and CNN-
based methods is the computation time, as illustrated in Fig.

 12

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 3, NO. 2, DECEMBER 2023, pp. 9-14 

 

 
 



8. Because the object detection architecture was chosen for
speed, there is a large gap in how long each agent took to train.
The object-based agent took 5.8 hours, compared to 8.3 hours
for the CNN-based agent. This is entirely due to training an
additional CNN on top of the DQN will decrease the speed of
inferring, but it may aid in mastery of the environment. Future
work could help determine if this is the case.

One important question that remains, is what would the
performance be after another million or more frames of
training on the Mario environment, as this example might be
indicating overfitting of the object detector agent. Perhaps both
agents will come to learn the environments with a similar level
of mastery, or one may outperform the other. This will be
addressed in a future work.

VI. CONCLUSION

In this paper, a new approach to processing the inputs for
reinforcement learning agents is proposed, and demonstrated
in applications in 2 video games: Shovel Knight and Mario.
It has been shown that this new approach is capable of
learning the given environments, and in the case of Mario, can
outperform the traditional CNN architecture of environments
with image inputs. This form of observation handling may
allow agents to learn in environments where it was previously
more difficult to derive rules, as human logic can be used to
aid in reward function creation, as shown in the example for
Shovel Knight. This method also leads itself to be explored by
explainable approaches in determining the reason for decision
making.

ACKNOWLEDGMENT

I would like to thank Dr. Barnabas Bede, Dr. Yilin Wu,
and Shivam Kumar for all the help they have given me for
this project. I would also like to thank DigiPen Institute of
Technology as well as Prof. Peter Toth, Dr. Ola Amayri, Dr.
Brigitta Vermesi, and Dr. Pushpak Karnick who all helped me
realize my love for machine learning and math. And one last
thanks to Eric Zander for collaborating on other projects and
papers this past year.

REFERENCES

[1] D. Malik, Y. Li, and P. Ravikumar, “When is generalizable
reinforcement learning tractable?” CoRR, vol. abs/2101.00300, 2021.
[Online]. Available: https://arxiv.org/abs/2101.00300

[2] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich
feature hierarchies for accurate object detection and semantic
segmentation,” CoRR, vol. abs/1311.2524, 2013. [Online]. Available:
http://arxiv.org/abs/1311.2524

[3] E. Hernandez, S. Schwettmann, D. Bau, T. Bagashvili, A. Torralba,
and J. Andreas, “Natural language descriptions of deep visual
features,” CoRR, vol. abs/2201.11114, 2022. [Online]. Available:
https://arxiv.org/abs/2201.11114

[4] “Shovel knight: Shovel of hope.” [Online]. Available:
https://www.yachtclubgames.com/games/shovel-knight-shovel-of-hope

[5] “Super mario bros.: The lost levels,” 1986.
[6] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,

J. Tang, and W. Zaremba, “Openai gym,” 2016.
[7] C. Kauten, “Super Mario Bros for OpenAI Gym,” GitHub, 2018.

[Online]. Available: https://github.com/Kautenja/gym-super-mario-bros
[8] P. Skalski, “Make Sense,” https://github.com/SkalskiP/make-sense/,

2019.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling
in deep convolutional networks for visual recognition,” CoRR, vol.
abs/1406.4729, 2014. [Online]. Available: http://arxiv.org/abs/1406.4729

[10] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C.
Berg, “SSD: single shot multibox detector,” CoRR, vol. abs/1512.02325,
2015. [Online]. Available: http://arxiv.org/abs/1512.02325

[11] J. Redmon, S. K. Divvala, R. B. Girshick, and
A. Farhadi, “You only look once: Unified, real-time object
detection,” CoRR, vol. abs/1506.02640, 2015. [Online]. Available:
http://arxiv.org/abs/1506.02640

[12] G. Jocher, “YOLOv5 by Ultralytics,” 5 2020. [Online]. Available:
https://github.com/ultralytics/yolov5

[13] C. Wang, I. Yeh, and H. M. Liao, “You only learn one representation:
Unified network for multiple tasks,” CoRR, vol. abs/2105.04206, 2021.
[Online]. Available: https://arxiv.org/abs/2105.04206

[14] R. Girshick, “Fast r-cnn,” in 2015 IEEE International Conference on
Computer Vision (ICCV), 2015, pp. 1440–1448.

[15] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137–
1149, 2017.

[16] A. Bochkovskiy, C. Wang, and H. M. Liao, “Yolov4: Optimal speed
and accuracy of object detection,” CoRR, vol. abs/2004.10934, 2020.
[Online]. Available: https://arxiv.org/abs/2004.10934

[17] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style,
high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32. Curran Associates, Inc., 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[18] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski,
W. Dabney, D. Horgan, B. Piot, M. Azar, and D. Silver,
“Rainbow: Combining improvements in deep reinforcement
learning,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, no. 1, Apr. 2018. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/11796

[19] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 30, no. 1, Mar. 2016. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/10295

[20] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” 2015, cite arxiv:1511.05952Comment: Published at ICLR 2016.
[Online]. Available: http://arxiv.org/abs/1511.05952

[21] Z. Wang, N. de Freitas, and M. Lanctot, “Dueling network architectures
for deep reinforcement learning,” CoRR, vol. abs/1511.06581, 2015.
[Online]. Available: http://arxiv.org/abs/1511.06581

[22] K. D. Asis, J. F. Hernandez-Garcia, G. Z. Holland, and
R. S. Sutton, “Multi-step reinforcement learning: A unifying
algorithm,” CoRR, vol. abs/1703.01327, 2017. [Online]. Available:
http://arxiv.org/abs/1703.01327

[23] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional
perspective on reinforcement learning,” CoRR, vol. abs/1707.06887,
2017. [Online]. Available: http://arxiv.org/abs/1707.06887

[24] M. Fortunato, M. G. Azar, B. Piot, J. Menick, M. Hessel, I. Osband,
A. Graves, V. Mnih, R. Munos, D. Hassabis, O. Pietquin, C. Blundell,
and S. Legg, “Noisy networks for exploration,” in International
Conference on Learning Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=rywHCPkAW

[25] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, 12 2014.

[26] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
Feb 2015. [Online]. Available: https://doi.org/10.1038/nature14236

[27] Yannbouteiller, “vgamepad: Virtual xbox360 and du-
alshock4 gamepads in python.” [Online]. Available:
https://github.com/yannbouteiller/vgamepad

[28] B. Höglinger-Stelzer, “Vigem: Virtual gamepad emulation framework.”
[Online]. Available: https://vigem.org/

 13

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 3, NO. 2, DECEMBER 2023, pp. 9-14 

 

 
 



[29] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in con-
text,” in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele,
and T. Tuytelaars, Eds. Cham: Springer International Publishing, 2014,
pp. 740–755.

[30] “Mss: An ultra fast cross-platform multiple screenshots module in pure
python using ctypes.” [Online]. Available: https://pypi.org/project/mss/

[31] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[32] J. Hosang, R. Benenson, and B. Schiele, “Learning non-maximum
suppression,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 6469–6477.

[33] Y. Hu, W. Wang, H. Jia, Y. Wang, Y. Chen, J. Hao, F. Wu, and
C. Fan, “Learning to utilize shaping rewards: A new approach of
reward shaping,” CoRR, vol. abs/2011.02669, 2020. [Online]. Available:
https://arxiv.org/abs/2011.02669

 14

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 3, NO. 2, DECEMBER 2023, pp. 9-14 

 

 
 


