

Digital Signal Processing Simulation Based on

Matrix-Vector description

 Tibor WÜHRL

Obuda University

Kandó Kálmán Faculty of Electrical

Engineering

Budapest, Hungary

wuhrl.tibor@kvk.uni-obuda.hu

orcid.org/0000-0002-7522-3511

Sándor GYÁNYI

Obuda University

Kandó Kálmán Faculty of Electrical

Engineering

Budapest, Hungary

gyanyi.sandor@kvk.uni-obuda.hu

orcid.org/0000-0001-9405-3864

Abstract— Even a small error in the design and

implementation of a DSP algorithm can cause complete

inoperability, finding and fixing these errors is laborious and time-

consuming. Of course, the validation of the correct operation of a

DSP algorithm must be confirmed by measurement. In case of a

deviation, it is important to find the root of the problem, the

simulation of the DSP algorithm is a reliable and efficient task

which can be performed by a desktop computer running some

mathematical program. The simulation – as an operation check –

could be performed in the time domain, or in the frequency

domain or in both. The system of equations describing the DSP

algorithm can also be written in matrix-vector form, therefore

these algorithms can be effectively simulated in the Matlab®

environment.

Keywords: DSP, simulation, time-domain, frequency-domain

I. INTRODUCTION

This paper describes the generation of an efficient matrix-
vector shape and a case study. This article is based on and
should be considered a continuation of an earlier paper [1].

The design of digital signal processing algorithms needs
several steps and any of them could contain possible errors.
The transformations are forming a connected system and
transformation relationships help to simplify the design steps
[2]. The system of transformations is summarized in Fig.1.

Fig. 1. System of transformations and design steps

Brief descriptions if the design steps marked on Fig. 1, are
the following:

• Firs step: definition of requirement;

• Second step: determination of the sampling
frequency (taking into account the spectrum of
the signal to be processed);

• Third step: elimination of periodicity;

• Fourth step: Design the passive reference circuit,
for example according to wave digital filtering;

• Fifth step: Transform the reference circuit into
„Z” plane;

• Sixth step: Transform the flow diagram into
time-domain;

• Seventh step: Check the result, simulation;

• Eighth step: Implementation.

Any task performed on a well-chosen plane can usually be
solved with fewer design calculations, so the design is simpler
and more transparent. The last phase of the design often
consists of transforming the algorithm from the "Z" plane to
the time domain (sixth step in Fig.1.). The transformation tool
is the inverse discrete Laplace transform, which is usually
very simple when applied it to a signal flow diagram. The
application summary of the inverse "Z" transformation to the
individual flow diagram components is shown in Table 1.

 1

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 4, NO. 1, JULY 2024, pp. 1-8

Cite as: T. Wührl and S. Gyányi, “Digital Signal Processing Simulation Based on Matrix-Vector description”, Syst. Theor. Control Comput. J., vol. 4, no. 1,

pp. 1–8, Jul. 2024.

DOI: 10.52846/stccj.2024.4.1.58

time domain „Z” domain

v1(k)

v2(k) un(k)

Z

-1

Table 1. Graphical Inverse Discrete Laplace transformation of FIRS flow

diagram components

Of course, the transformation also can be performed on
mathematical equations.

In the time-domain column of Table 1. the "k" indicates
the takt number. The "T" sampling interval is the reciprocal of
sampling frequency of the system.

The implementation of the digital signal processing
algorithm, such as creating program code for an embedded
controller or hardware definition for a Field Programmable
Gate Array (FPGA) circuit, is best suited to an algorithm
defined in the time domain. This is why the algorithm check
should also take place in the time domain.

II. LINEAR DSP SYSTEM ANALYSIS IN TIME DOMAIN

After the description of the DSP algorithm in matrix-vector
form, the time domain simulation can be efficiently performed
in the MATLAB environment. The matrix-vector description
of the DSP algorithm comes from the difference equations
defining the DSP algorithm.

 As shown in my previous work [1] as an illustrative simple
example for this, we examine a first-order feedback member
(Fig.2.). All nodes (y1, y2, y3) of the analyzed algorithm are
marked to write the equations.

Fig. 2. Tested simple algorithm with marked nodes

By marking all nodes, all sub-calculations of the algorithm
become observable.

A. Writing a system of linear equations

Equations (3), (4) and (5) give the connection between
nodes with the symbols used in Table 1.

 y1(k)=In(k) + y3(k) ()

 y2(k)=y1(k-1) ()

 y3(k)=c · y2(k) ()

Equations (3), (4) and (5) are formed a system of
equations, after rearrangement, all node values interpreted in
the "k" step were placed on the left side (6), (7), (8).

 y1(k) – y3(k) = In(k) ()

 y2(k)=y1(k-1) ()

 −c·y2(k) + y3(k) = 0 ()

In the following, the (6), (7) and (8) are extended to all
nodes (9), (10), (11). Nodes that not included in the equation
are interpreted with a zero-multiplication factor.

 1·y1(k) + 0·y2(k) – 1·y3(k) = In(k) ()

 0·y1(k) +1·y2(k) + 0·y3(k)= y1(k-1) ()

 0·y1(k) - c·y2(k) + 1·y3(k) = 0 ()

The matrix-vector form (12) is written from the system
formed by equations (9), (10) and (11).

 |
1 0 −1
0 1 0
0 −𝑐 1

| ∙ |

𝑦1(𝑘)

𝑦2(𝑘)

𝑦3(𝑘)
| = |

𝐼𝑛(𝑘)

𝑦1(𝑘 − 1)
0

|

(12)

The relation in the form (12) can be simplified more (13):

 𝑀 ∙ 𝑌 = 𝐺 (13)

The "M" stands for system matrix. This defines and
describes the signal processing algorithm. The Y vector is the
node vector, which contains the value of the total node in the
"k" calculation step. "G" is the excitation vector, which serves
the input values of the algorithm in the "k" step. Input values
include the input pattern or patterns and state variables. The
state variables are the samples calculated in the previous step
(k-1) and stored in the "T" storage. The case study above has
an input (In(k)) and a state variable (y1(k-1)) only.

Previously, the "M" system matrix was created by using
the system of equations. The system matrix can also be created
directly from the flow diagram of digital signal processing
algorithm. For this, we must use a diagram where all nodes are
marked, as seen on Table 1. The system matrix will be a
quadratic matrix with the same number of nodes. Nodes are
assigned to each row of the matrix as a "source" node, and to
each column as a "destination" node. After that, it is examined
how we can get from one of the source nodes on the signal
flow diagram to the individual target nodes on the signal flow
diagram. From the target node, the arrival is examined in the
direction opposite to the direction of the signal flow and the
result of the arrival is taken into account with a minus one
multiplier value.

The calculations to be performed in the "k"-th step are
observed in the signal flow diagram. For this reason, the
elemental "T" storage building block that stores the state
variable is considered broken during the creation of the system
matrix.

Examining the main diagonal, here the destination and
source nodes are the same, and they are taken into account

 2

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 4, NO. 1, JULY 2024, pp. 1-8

with a multiplication with one. Fig. 3. illustrates the main
diagonal filling of the "M" system matrix.

Fig. 3. Fill in strategy of main diagonal of "M".

The filling of the first row of the "M" system matrix is
shown in Fig. 4.

Fig. 4. Filling in the first line of the system matrix

It is not possible to get from the node “y1” to the node “y2”,

because in the calculation step (k), the building element "T"

(elementary storage) represents a break in the signal flow

diagram. The gap between the two nodes is taken into account

with a coefficient of 0. At the same time, the value of the state

variable calculated in step (k-1) is an excitation signal in step

(k), therefore it is taken into account in the vector G, see

relation (12).

In the relationship y2 – y1 and y2 – y3, there is a break in
the direction opposite to the direction of the signal flow in the
algorithm signal flow diagram. This is illustrated in Fig. 5.

Fig. 5. Filling in the second line of the system matrix

In the third row of the system matrix, the relation y3 – y2
is created by a multiplying term. In the algorithm, the constant
of the multiplicative term is denoted by "c". Based on this, the
third row, second column element of the matrix will be "-c".

Fig. 6. Filling in the third line of the system matrix

Moving from y3 to node y1 there is no connection, so the
first element of the last row of the matrix will be zero.

The system matrix clearly describes the algorithm. The
algorithm gives its answers depending on the stimulus signal.
According to the description, the samples containing the
excitation signals and the state variable values calculated in
the previous step are contained in the G vector of relation (12).

B. Method of solving equations

In the previous subsection, the description of the algorithm
with a system of linear equations (13) and the description
methods were given. Now the solution and solvability are
being examined. Based on the algorithm, the system matrix M
is known from the relationship of the form (13). During the
simulation, we look for the response signals of the algorithm,
which can be found in the Y vector for each node. The
response signal Y will develop as a function of the excitation
given by the vector G. It is important here that the initial value
of the state variables is known and fixed. In the future, when
searching for a solution, the state variables will start from a
zero initial value.

To find the solution, relation (13) must be rearranged to
(14).

 𝑀−1 ∙ 𝐺 = 𝑌 (14)

From relation (14), it can be seen that the inverse [3] of the
system matrix M describing the algorithm must be formed.

Forming the inverse matrix is formally a complex task
consisting of many steps. The system matrix (12) of the
algorithm that is the subject of our case study contains a
symbol "c", which determines the location of the feedback
pole. Of course, this constant "c" is a specific numerical value,
therefore the inverse matrix formation can be calculated with
specific numbers, which is greatly assisted by the MATLAB®
program package and its built-in function forming the inverse
matrix (15).

 Mi = inv(M) ()

The function (15) can be output from the MATLAB®
command line interface or inserted into the "m" source code.
The result is the "Mi" inverse matrix. The system of equations
(14) must be solved "N" times. Based on this, the core of the
simulation must be organized into a cycle (16):

for k=2:N+1;

 G=[In(k), y1(k-1), 0]';

 Y=Mi*G;

 y1(k)=Y(1);

 y2(k)=Y(2);

 y3(k)=Y(3);

end; (16)

Some explanation for code snippet (16) is important. The
loop runs from 2 to N+1, so the loop core will be executed "N"
times. For technical reasons, the cycle is run this way and not
from 1 to "N", since in this case it would be addressed outside
the y1(k-1) vector in the first calculation takt, which would
mean an error. In order to prepare the loop, the "N" element
length vectors for each node and the "In" vector containing the
input test signal must be defined in advance.

To prepare the running, it is advisable to create "empty"
vectors, which are actually filled with "0" element values.

y=zeros(1,N); ()

These vectors also automatically set the initial value of the
state variables, which in this case is zero. With direct value
assignment, the variable value of the state can of course be
overwritten and modified if as needed.

The sample sequence connected to the input, i.e. the
samples of the excitation signal, is contained in the vector

 3

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 4, NO. 1, JULY 2024, pp. 1-8

"In", which also consists of "N" elements. This can be a
sample sequence of any arbitrarily chosen signal defined in a
time domain. For general tests, it is advisable to use the digital
equivalent of the "dirac-delta". The reason for this is that the
Dirac pulse for time "dt" contains infinite spectral components
with unit amplitude, i.e. its Laplace transform is constant '1'
(18) [4].

 L(t) = ()

The Kronecker delta signal can be considered a sampled
signal of the Dirac delta, so it can be produced in the vector
"In" with "N" element (19). All its elements will be zero
except the first element, which will be set to '1'.

 In = 1, 0, 0, 0 … 0; ()

For technical reasons, in order for the excitation signal to
fit the simulation core (16), the first element must be chosen
as zero, and the second element as '1' (20). This is just a "T"
time offset.

 In = 0, 1, 0, 0 … 0; ()

The digital signal processing algorithm will respond to the
Kronecker delta excitation with the weight function. The
weight function [5] is an extremely important network
characteristic function, since the convolution of any other
excitation signal and the weight function gives the response
[6] to the given signal. Algorithm stability and possible
excitation problems [7] can also be observed with the help of
a weight function.

Another important property of the weight function is that
the spectral image that represents is the same as the transfer
function of the signal processing algorithm interpreted in the
frequency domain. So we can also check whether the
algorithm design frequency criterion requirement is met. The
Fourier transform of the weight function gives the complex
transfer function, and it absolute value describes the amplitude
transfer as a function of frequency.

plot(20*log10(abs(fft(Out)))); ()

The relation (21) is actually a nesting of a MATLAB®
function, which gives the absolute value of the transfer
function in decibel [dB]. The result is displayed on the screen
according to (17), but of course the calculated spectrum can
also be stored in a vector. When interpreting the result, take
into account that a square window was used. Distortions due
to the finite number of elements can be influenced by other
window functions [8].

III. ANALISYS OF NONLINEAR MODEL

When designing signal processing algorithms, the
conditions are considered to be linear in many cases.
Algorithms are born in linear conditions.

This simplification can be made as long as the nonlinear
effects are negligible. For the real-time operation of the
algorithm, we use a high-speed digital signal processing
processor (DSP) or a Field Programmable Gate Array (FPGA)
device. In the case of these devices, there are usually relatively
few bits for the number representation, in the case of lower-

priced components, the number representation can even be
fixed-point only.

A finite number of bits can cause two nonlinear effects. In
some cases, the number no longer fits at certain nodes of the
algorithm at the available bit size, therefore it overflows. The
other nonlinear effect comes from the lack of necessary
precision. Typically, the result of the multiplication operation
needs truncation and rounding. The latter adds noise to the
signal, but it can also endanger the stability of the algorithm
[9].

A. Overflow problems

Overflow problems can typically occur at the summation
nodes of the algorithm. In the case of summing two or more
digital samples (Fig. 7), it may occur that the resulting
numerical value exceeds the numerical representation range.
In the case of modulo arithmetic, such an overflow causes a
gross error and inoperability.

Fig. 7. Typical overflow points in digital signal processing algorithms

The dangerous points of the overflow of the algorithm can
be easily detected with the linear analysis described in the
previous chapter (it can be considered linear due to the high
numerical representation accuracy of MATLAB®).

A vector with "N" elements was assigned to each node of
the simulation. During the simulation, all calculated samples
are available for the given excitation signal. The samples are
very likely to be free of overflow in the simulation
environment. By observing the minimum and maximum
values of the samples (22) in accordance with a specific
implementation environment, problems can be easily
detected. This article does not attempt to deal with the
problem, it only mentions it.

min(y); max(y); ()

We can reduce the possibility of overflow by linear
transformation of the detected overflow-prone nodes, see Fig.
8. In the example, the value of the constant "c1" is less than 1.

Fig. 8. Reducing the risk of overflow in digital signal processing algorithm

Overflow handling can also be done in the signal processing
processor or Field Programmable Gate Array implementation
phase of the algorithm by creating a hardware or software
saturation method or triangular overflow characteristic in the
number representation.

 4

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 4, NO. 1, JULY 2024, pp. 1-8

B. Rounding problems

Rounding problems typically occur as a result of the
multiplication operation. The following signal flow diagram
also shows the quantization after multiplication (see Fig. 9)
with "Q" marked box.

Fig. 9. Quantization point in the algorithm

The system matrix of the case examined during the linear
simulation is unchanged, but the core of the simulation (16)
must be extended with "Q" function (23).

for k=2:N+1;

 G=[In(k), y1(k-1), 0]';

 Y=Mi*G;

 y1(k)=Y(1);

 y2(k)=Y(2);

 y3(k)=Q1(Y(3),nb);

end; (23)

In the code fragment (23) the „Q1” is a non-built-in
MATLAB® function that we have to create in a file "m"
called Q1.m. In the function, we specify the number of bits
"nb". The implemented function (24) performs absolute value
truncation on the signed, fixed-point fraction number contains
“nb” bits.

function [q]=q1(x,n)

 q=(floor(x*2^n))/2 (24)

Of course, other quantization functions can also be
created, such as those performing mathematical rounding. In
all cases, the goal is to reproduce the operating environment
of the algorithm, as this is how quantization problems arising
during implementation can be identified and analyzed.

IV. COMPLEX DSP MODEL SIMULATION IN LINEAR AND

NON-LINEAR CASES

In this chapter, a simulation is presented on a wave digital
bridge filter. The bridge filter structure is shown in Fig. 10.
[2].

Fig. 10. Sructure of a Lattice Wave Digital Filter

The S’ and S” functions can be implemented by using all-
pass elements [10].

We use a fifth-order low-pass filter as the subject of the
examination. The design of the bridge filter algorithm is not
the scope of this article, we only provide the specification and
the algorithm that fulfills it.

Filter type: lowpass, LWDF

Attenuation of stop-band: az = 40 dB

Ripple of pass-band: aa = 0,2 dB

Upper frequency of pass-band: fa = 1,8 kHz

Lower frequency of stop-band: fz = 2,3 kHz

Sampling frequency: fm= 8 kHz

Fig. 11. shows the algorithm suitable for the specification.

S’

S’’

-1
a1

b1

b2

1/2

1/2

 5

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 4, NO. 1, JULY 2024, pp. 1-8

Fig. 11. 5th order Lattice WDF agorithm

The multiplication constants of the algorithm are the
following:

0= 0,3209824

1 = 0,42110482

2 = 0,30200688

3 = 0,1625421

4 = 0,11045108

This article is not containing the MATLAB® simulation
source code in matrix-vector form because of length
limitation, but it can be downloaded here: [11]

Based on the linear simulation, the impulse response
(weight function) of the algorithm is shown in Fig.12.

 6

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 4, NO. 1, JULY 2024, pp. 1-8

Fig. 12. Impulse response of the algorithm shown in Fig.12.

Fig. 13. shows the absolute value of the Fourier transform of
weight function.

Fig. 13. Fourier trasform of Fig.13.

Fig. 14. shows the simulation results of the quantization
effect on the outputs of the individual multiplier components.
Fixed-point number representation and 12 bit quantization
were performed in the simulation, but this number can be
changed by rewriting the constant "nb" in the simulation
source code.

Fig. 14. Limit cycle effect – observed on weight function (fixed point 12 bits

– mathematical rounding)

The absolute value of the Fourier transformation of the
weight function also shows the quantization noise and the
limit cycle phenomenon. In the Fig. 15. the limit cycle

observation is marked by red circle, the quantization noise can
be observed in the dead band, which is marked in blue.

Fig. 15. Fourier transformation of the wave function shown on Fig.15.

By using „floor” function (rounding to the lower number)
on 12-bit wide signed fixed numbers, the quantization noise
remains, but the limit cycle phenomenon disappears, as shown
in Fig.16.

Fig. 16. No limit cycle effect observed on weight function (fixed point 12

bits – “floor” rounding)

The MATLAB® source code of the simulation and the
system matrix describing the DSP algorithm are not published
in this article because of length limitations, but they can be
downloaded from the following location [11]. These files are
provided “as-is” and can be used freely.

V. CONCLUSION

A significant part of DSP algorithms can be described in
matrix-vector form. The differential equation system defined
in this way can be effectively simulated in the MATLAB®
environment. These simulations performed in an environment
considered as linear can verify the design result, i.e. the
correctness of the signal flow diagram. The MATLAB®

 7

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 4, NO. 1, JULY 2024, pp. 1-8

application running in a normal PC environment provides an
almost linear environment due to the accuracy of the
numerical representation, but in reality, a lower number
representation accuracy is available due to the reduced
computational power available in real time operation.
Relatively few bits (12, 16, 24 depends on the hardware) and
often only fixed precision number representation are provided.
This causes a clearly visible quantification problem,
especially at the output of the multiplier components. These
quantization effects can be considered in the linear simulation,
so the non-linear behavior of the DSP algorithm caused by
truncation and rounding methods can also be well simulated.
The quantization noise effect becomes measurable, and the
stability of the algorithm can also be examined.

Signal overload may occur at certain points of the
implemented DSP algorithm due to the limited number of bits
that can be used for number representation. In digital signal
processing, an overload - mainly caused by calculation
overflow - does not result signal distortion, but the collapse of
the entire DSP algorithm operation. With the help of the time
domain analysis performed in the MATLAB® environment,
the dangerous nodes affected by the overflow of the DSP
algorithm can be detected. After detection, the probability of
an overflow can be significantly reduced by linear
transformation of the algorithm.

A deep analysis of the algorithm is definitely
recommended as the last phase of the DSP algorithm design.
After successful simulations the verified algorithm can be
implemented by using a DSP processor or an FPGA.

ACKNOWLEDGMENT

We would like to thank the Óbuda University for
supporting my research.

Special thanks to STCCJ for providing the opportunity to
present our research results.

REFERENCES

[1] Tibor WÜHRL, Simulation of Digital Signal Processing Algorithms in
Time Domain; In: Szakál, Anikó (szerk.) IEEE 17th International
Symposium on Applied Computational Intelligence and Informatics
SACI 2023 : Proceedings Budapest, Magyarország : Óbudai Egyetem,
IEEE Hungary Section (2023) 818 p. pp. 767-772. , 6 p.

[2] Tibor WÜHRL: Hullámdigitális jelfeldolgozás alapjai; Budapest,
Óbudai Egyetem 2010, 124 p

[3] Mathworks: Compute inverse of Symbolic Matrix;
https://www.mathworks.com/help/symbolic/inv.html

[4] Mathematics: Laplace Transform of Dirac Delta function;

https://math.stackexchange.com/questions/1690741/laplace-
transform-of-dirac-delta-function

[5] M. Hoffmann: Digital signal processing mathematics
 https://cds.cern.ch/record/1100533/files/p10.pdf

[6] Mathematics: Convolutions and the convolution theorem

https://math.stackexchange.com/questions/2770374/convolutions-
and-the-convolution-theorem

[7] ALFRED FETTWEIS - KLAUS MEERKÖTTER: Suppression of
Parasitic Oscillation in Wave Digital Filters; IEEE VOL. CAS-22, NO.
3, March 1975

[8] Luis Chioye, Art Kay: Fast Fourier Transforms (FFTs) and
Windowing, Texas Instrumentrs;
https://training.ti.com/sites/default/files/docs/adcs-fast-fourier-
transforms-and-windowing-presentation-quiz.pdf

[9] Oleksiy Kuznyetsov: Towards the Control of Multistability, in a PWM-
Driven DC Motor Drive by Short Forcing; Acta Polytechnica
Hungarica Vol. 19, No. 11, 2022

[10] Lajos GAZSI, Explicit Formulas for Lattice Wave Digital Filters; IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-32,
NO. 1, JANUARY 1985

[11] Tibor WÜHRL, Downlodable MATLAB® source codes:
https://hti.kvk.uni-obuda.hu/publications-of-dr-habil-wuhrl-tibor/

 8

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 4, NO. 1, JULY 2024, pp. 1-8

https://www.mathworks.com/help/symbolic/inv.html
https://math.stackexchange.com/questions/1690741/laplace-transform-of-dirac-delta-function
https://math.stackexchange.com/questions/1690741/laplace-transform-of-dirac-delta-function
https://cds.cern.ch/record/1100533/files/p10.pdf
https://training.ti.com/sites/default/files/docs/adcs-fast-fourier-transforms-and-windowing-presentation-quiz.pdf
https://training.ti.com/sites/default/files/docs/adcs-fast-fourier-transforms-and-windowing-presentation-quiz.pdf

