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Abstract— Even a small error in the design and 

implementation of a DSP algorithm can cause complete 

inoperability, finding and fixing these errors is laborious and time-

consuming. Of course, the validation of the correct operation of a 

DSP algorithm must be confirmed by measurement. In case of a 

deviation, it is important to find the root of the problem, the 

simulation of the DSP algorithm is a reliable and efficient task 

which can be performed by a desktop computer running some 

mathematical program. The simulation – as an operation check – 

could be performed in the time domain, or in the frequency 

domain or in both. The system of equations describing the DSP 

algorithm can also be written in matrix-vector form, therefore 

these algorithms can be effectively simulated in the Matlab® 

environment.  

Keywords: DSP, simulation, time-domain, frequency-domain 

I. INTRODUCTION  

This paper describes the generation of an efficient matrix-
vector shape and a case study. This article is based on and 
should be considered a continuation of an earlier paper [1].  

The design of digital signal processing algorithms needs 
several steps and any of them could contain possible errors. 
The transformations are forming a connected system and 
transformation relationships help to simplify the design steps 
[2]. The system of transformations is summarized in Fig.1. 

 

Fig. 1. System of transformations and design steps 

Brief descriptions if the design steps marked on Fig. 1, are 
the following: 

• Firs step: definition of requirement; 

• Second step: determination of the sampling 
frequency (taking into account the spectrum of 
the signal to be processed); 

• Third step: elimination of periodicity; 

• Fourth step: Design the passive reference circuit, 
for example according to wave digital filtering; 

• Fifth step: Transform the reference circuit into 
„Z” plane; 

• Sixth step: Transform the flow diagram into 
time-domain; 

• Seventh step: Check the result, simulation; 

• Eighth step: Implementation. 

 

Any task performed on a well-chosen plane can usually be 
solved with fewer design calculations, so the design is simpler 
and more transparent. The last phase of the design often 
consists of transforming the algorithm from the "Z" plane to 
the time domain (sixth step in Fig.1.). The transformation tool 
is the inverse discrete Laplace transform, which is usually 
very simple when applied it to a signal flow diagram. The 
application summary of the inverse "Z" transformation to the 
individual flow diagram components is shown in Table 1. 
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Table 1. Graphical Inverse Discrete Laplace transformation of FIRS flow 

diagram components 

Of course, the transformation also can be performed on 
mathematical equations.  

In the time-domain column of Table 1. the "k" indicates 
the takt number. The "T" sampling interval is the reciprocal of 
sampling frequency of the system. 

The implementation of the digital signal processing 
algorithm, such as creating program code for an embedded 
controller or hardware definition for a Field Programmable 
Gate Array (FPGA) circuit, is best suited to an algorithm 
defined in the time domain. This is why the algorithm check 
should also take place in the time domain. 

II. LINEAR DSP SYSTEM ANALYSIS IN TIME DOMAIN 

After the description of the DSP algorithm in matrix-vector 
form, the time domain simulation can be efficiently performed 
in the MATLAB environment. The matrix-vector description 
of the DSP algorithm comes from the difference equations 
defining the DSP algorithm. 

 As shown in my previous work [1] as an illustrative simple 
example for this, we examine a first-order feedback member 
(Fig.2.). All nodes (y1, y2, y3) of the analyzed algorithm are 
marked to write the equations. 

 

Fig. 2. Tested simple algorithm with marked nodes  

By marking all nodes, all sub-calculations of the algorithm 
become observable. 

A. Writing a system of linear equations 

Equations (3), (4) and (5) give the connection between 
nodes with the symbols used in Table 1. 

  y1(k)=In(k) + y3(k) () 

  y2(k)=y1(k-1) () 

  y3(k)=c · y2(k) () 

Equations (3), (4) and (5) are formed a system of 
equations, after rearrangement, all node values interpreted in 
the "k" step were placed on the left side (6), (7), (8). 

 y1(k) – y3(k) = In(k) () 

 y2(k)=y1(k-1) () 

 −c·y2(k) + y3(k) = 0 () 

In the following, the (6), (7) and (8) are extended to all 
nodes (9), (10), (11). Nodes that not included in the equation 
are interpreted with a zero-multiplication factor. 

 1·y1(k) + 0·y2(k) – 1·y3(k) = In(k) () 

 0·y1(k) +1·y2(k) + 0·y3(k)= y1(k-1) () 

 0·y1(k) - c·y2(k) + 1·y3(k) = 0 () 

The matrix-vector form (12) is written from the system 
formed by equations (9), (10) and (11). 

    |
1 0 −1
0 1 0
0 −𝑐 1

| ∙ |

𝑦1(𝑘)

𝑦2(𝑘)

𝑦3(𝑘)
| = |

𝐼𝑛(𝑘)

𝑦1(𝑘 − 1)
0

|       

(12) 

The relation in the form (12) can be simplified more (13): 

  𝑀 ∙ 𝑌 = 𝐺   (13) 

The "M" stands for system matrix. This defines and 
describes the signal processing algorithm. The Y vector is the 
node vector, which contains the value of the total node in the 
"k" calculation step. "G" is the excitation vector, which serves 
the input values of the algorithm in the "k" step. Input values 
include the input pattern or patterns and state variables. The 
state variables are the samples calculated in the previous step 
(k-1) and stored in the "T" storage. The case study above has 
an input (In(k)) and a state variable (y1(k-1)) only. 

Previously, the "M" system matrix was created by using 
the system of equations. The system matrix can also be created 
directly from the flow diagram of digital signal processing 
algorithm. For this, we must use a diagram where all nodes are 
marked, as seen on Table 1. The system matrix will be a 
quadratic matrix with the same number of nodes. Nodes are 
assigned to each row of the matrix as a "source" node, and to 
each column as a "destination" node. After that, it is examined 
how we can get from one of the source nodes on the signal 
flow diagram to the individual target nodes on the signal flow 
diagram. From the target node, the arrival is examined in the 
direction opposite to the direction of the signal flow and the 
result of the arrival is taken into account with a minus one 
multiplier value. 

The calculations to be performed in the "k"-th step are 
observed in the signal flow diagram. For this reason, the 
elemental "T" storage building block that stores the state 
variable is considered broken during the creation of the system 
matrix. 

Examining the main diagonal, here the destination and 
source nodes are the same, and they are taken into account 
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with a multiplication with one. Fig. 3. illustrates the main 
diagonal filling of the "M" system matrix. 

 

Fig. 3. Fill in strategy of main diagonal of "M".  

The filling of the first row of the "M" system matrix is 
shown in Fig. 4. 

 

Fig. 4. Filling in the first line of the system matrix  

It is not possible to get from the node “y1” to the node “y2”, 

because in the calculation step (k), the building element "T" 

(elementary storage) represents a break in the signal flow 

diagram. The gap between the two nodes is taken into account 

with a coefficient of 0. At the same time, the value of the state 

variable calculated in step (k-1) is an excitation signal in step 

(k), therefore it is taken into account in the vector G, see 

relation (12). 

In the relationship y2 – y1 and y2 – y3, there is a break in 
the direction opposite to the direction of the signal flow in the 
algorithm signal flow diagram. This is illustrated in Fig. 5. 

 

Fig. 5. Filling in the second line of the system matrix  

In the third row of the system matrix, the relation y3 – y2 
is created by a multiplying term. In the algorithm, the constant 
of the multiplicative term is denoted by "c". Based on this, the 
third row, second column element of the matrix will be "-c". 

 

Fig. 6. Filling in the third line of the system matrix  

Moving from y3 to node y1 there is no connection, so the 
first element of the last row of the matrix will be zero. 

The system matrix clearly describes the algorithm. The 
algorithm gives its answers depending on the stimulus signal. 
According to the description, the samples containing the 
excitation signals and the state variable values calculated in 
the previous step are contained in the G vector of relation (12). 

B. Method of solving equations 

In the previous subsection, the description of the algorithm 
with a system of linear equations (13) and the description 
methods were given. Now the solution and solvability are 
being examined. Based on the algorithm, the system matrix M 
is known from the relationship of the form (13). During the 
simulation, we look for the response signals of the algorithm, 
which can be found in the Y vector for each node. The 
response signal Y will develop as a function of the excitation 
given by the vector G. It is important here that the initial value 
of the state variables is known and fixed. In the future, when 
searching for a solution, the state variables will start from a 
zero initial value. 

To find the solution, relation (13) must be rearranged to 
(14). 

  𝑀−1 ∙ 𝐺 = 𝑌   (14) 

From relation (14), it can be seen that the inverse [3] of the 
system matrix M describing the algorithm must be formed. 

Forming the inverse matrix is formally a complex task 
consisting of many steps. The system matrix (12) of the 
algorithm that is the subject of our case study contains a 
symbol "c", which determines the location of the feedback 
pole. Of course, this constant "c" is a specific numerical value, 
therefore the inverse matrix formation can be calculated with 
specific numbers, which is greatly assisted by the MATLAB® 
program package and its built-in function forming the inverse 
matrix (15). 

 Mi = inv(M) () 

The function (15) can be output from the MATLAB® 
command line interface or inserted into the "m" source code. 
The result is the "Mi" inverse matrix. The system of equations 
(14) must be solved "N" times. Based on this, the core of the 
simulation must be organized into a cycle (16): 

for k=2:N+1; 

 G=[In(k), y1(k-1), 0]'; 

 Y=Mi*G; 

 y1(k)=Y(1); 

 y2(k)=Y(2); 

 y3(k)=Y(3); 

end;     (16) 

  

Some explanation for code snippet (16) is important. The 
loop runs from 2 to N+1, so the loop core will be executed "N" 
times. For technical reasons, the cycle is run this way and not 
from 1 to "N", since in this case it would be addressed outside 
the y1(k-1) vector in the first calculation takt, which would 
mean an error. In order to prepare the loop, the "N" element 
length vectors for each node and the "In" vector containing the 
input test signal must be defined in advance. 

To prepare the running, it is advisable to create "empty" 
vectors, which are actually filled with "0" element values. 

y=zeros(1,N);    () 

These vectors also automatically set the initial value of the 
state variables, which in this case is zero. With direct value 
assignment, the variable value of the state can of course be 
overwritten and modified if as needed. 

The sample sequence connected to the input, i.e. the 
samples of the excitation signal, is contained in the vector 
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"In", which also consists of "N" elements. This can be a 
sample sequence of any arbitrarily chosen signal defined in a 
time domain. For general tests, it is advisable to use the digital 
equivalent of the "dirac-delta". The reason for this is that the 
Dirac pulse for time "dt" contains infinite spectral components 
with unit amplitude, i.e. its Laplace transform is constant '1' 
(18) [4]. 

 L(t)  =  () 

The Kronecker delta signal can be considered a sampled 
signal of the Dirac delta, so it can be produced in the vector 
"In" with "N" element (19). All its elements will be zero 
except the first element, which will be set to '1'. 

 In = 1, 0, 0, 0 … 0; () 

For technical reasons, in order for the excitation signal to 
fit the simulation core (16), the first element must be chosen 
as zero, and the second element as '1' (20). This is just a "T" 
time offset. 

  In = 0, 1, 0, 0 … 0; () 

The digital signal processing algorithm will respond to the 
Kronecker delta excitation with the weight function. The 
weight function [5] is an extremely important network 
characteristic function, since the convolution of any other 
excitation signal and the weight function gives the response 
[6] to the given signal. Algorithm stability and possible 
excitation problems [7] can also be observed with the help of 
a weight function. 

Another important property of the weight function is that 
the spectral image that represents is the same as the transfer 
function of the signal processing algorithm interpreted in the 
frequency domain. So we can also check whether the 
algorithm design frequency criterion requirement is met. The 
Fourier transform of the weight function gives the complex 
transfer function, and it absolute value describes the amplitude 
transfer as a function of frequency. 

plot(20*log10(abs(fft(Out)))); () 

 

The relation (21) is actually a nesting of a MATLAB® 
function, which gives the absolute value of the transfer 
function in decibel [dB]. The result is displayed on the screen 
according to (17), but of course the calculated spectrum can 
also be stored in a vector. When interpreting the result, take 
into account that a square window was used. Distortions due 
to the finite number of elements can be influenced by other 
window functions [8]. 

III. ANALISYS OF NONLINEAR MODEL  

When designing signal processing algorithms, the 
conditions are considered to be linear in many cases. 
Algorithms are born in linear conditions.  

This simplification can be made as long as the nonlinear 
effects are negligible. For the real-time operation of the 
algorithm, we use a high-speed digital signal processing 
processor (DSP) or a Field Programmable Gate Array (FPGA) 
device. In the case of these devices, there are usually relatively 
few bits for the number representation, in the case of lower-

priced components, the number representation can even be 
fixed-point only. 

A finite number of bits can cause two nonlinear effects. In 
some cases, the number no longer fits at certain nodes of the 
algorithm at the available bit size, therefore it overflows. The 
other nonlinear effect comes from the lack of necessary 
precision. Typically, the result of the multiplication operation 
needs truncation and rounding. The latter adds noise to the 
signal, but it can also endanger the stability of the algorithm 
[9]. 

 

A. Overflow problems 

Overflow problems can typically occur at the summation 
nodes of the algorithm. In the case of summing two or more 
digital samples (Fig. 7), it may occur that the resulting 
numerical value exceeds the numerical representation range. 
In the case of modulo arithmetic, such an overflow causes a 
gross error and inoperability. 

 

 

 

Fig. 7. Typical overflow points in digital signal processing algorithms  

The dangerous points of the overflow of the algorithm can 
be easily detected with the linear analysis described in the 
previous chapter (it can be considered linear due to the high 
numerical representation accuracy of MATLAB®). 

A vector with "N" elements was assigned to each node of 
the simulation. During the simulation, all calculated samples 
are available for the given excitation signal. The samples are 
very likely to be free of overflow in the simulation 
environment. By observing the minimum and maximum 
values of the samples (22) in accordance with a specific 
implementation environment, problems can be easily 
detected. This article does not attempt to deal with the 
problem, it only mentions it. 

min(y); max(y);  () 

We can reduce the possibility of overflow by linear 
transformation of the detected overflow-prone nodes, see Fig. 
8. In the example, the value of the constant "c1" is less than 1. 

 

Fig. 8. Reducing the risk of overflow in digital signal processing algorithm 

Overflow handling can also be done in the signal processing 
processor or Field Programmable Gate Array implementation 
phase of the algorithm by creating a hardware or software 
saturation method or triangular overflow characteristic in the 
number representation. 
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B. Rounding problems 

Rounding problems typically occur as a result of the 
multiplication operation. The following signal flow diagram 
also shows the quantization after multiplication (see Fig. 9) 
with "Q" marked box. 

 

 

Fig. 9. Quantization point in the algorithm 

The system matrix of the case examined during the linear 
simulation is unchanged, but the core of the simulation (16) 
must be extended with "Q" function (23). 

for k=2:N+1; 

 G=[In(k), y1(k-1), 0]'; 

 Y=Mi*G; 

 y1(k)=Y(1); 

 y2(k)=Y(2); 

 y3(k)=Q1(Y(3),nb); 

end;     (23) 

 

In the code fragment (23) the „Q1” is a non-built-in 
MATLAB® function that we have to create in a file "m" 
called Q1.m. In the function, we specify the number of bits 
"nb". The implemented function (24) performs absolute value 
truncation on the signed, fixed-point fraction number contains 
“nb” bits. 

function [q]=q1(x,n) 

      q=(floor(x*2^n))/2  (24) 

 

Of course, other quantization functions can also be 
created, such as those performing mathematical rounding. In 
all cases, the goal is to reproduce the operating environment 
of the algorithm, as this is how quantization problems arising 
during implementation can be identified and analyzed. 

IV. COMPLEX DSP MODEL SIMULATION IN LINEAR AND 

NON-LINEAR CASES  

In this chapter, a simulation is presented on a wave digital 
bridge filter. The bridge filter structure is shown in Fig. 10. 
[2]. 

 

Fig. 10. Sructure of a Lattice Wave Digital Filter 

The S’ and S” functions can be implemented by using all-
pass elements [10]. 

We use a fifth-order low-pass filter as the subject of the 
examination. The design of the bridge filter algorithm is not 
the scope of this article, we only provide the specification and 
the algorithm that fulfills it. 

Filter type: lowpass, LWDF 

Attenuation of stop-band:  az = 40 dB 

Ripple of pass-band:   aa = 0,2 dB 

Upper frequency of pass-band:  fa = 1,8 kHz 

Lower frequency of stop-band:  fz = 2,3 kHz 

Sampling frequency:   fm= 8 kHz 

 

Fig. 11. shows the algorithm suitable for the specification. 

 
S’

S’’

-1
a1

b1

b2

1/2

1/2
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Fig. 11. 5th order Lattice WDF agorithm 

 

The multiplication constants of the algorithm are the 
following: 

0= 0,3209824 

1 = 0,42110482 

2 = 0,30200688 

3 = 0,1625421 

4 = 0,11045108 

This article is not containing the MATLAB® simulation 
source code in matrix-vector form because of length 
limitation, but it can be downloaded here: [11] 

Based on the linear simulation, the impulse response 
(weight function) of the algorithm is shown in Fig.12. 

 6

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 4, NO. 1, JULY 2024, pp. 1-8

 
 



 

Fig. 12. Impulse response of the algorithm shown in Fig.12. 

Fig. 13. shows the absolute value of the Fourier transform of 
weight function. 

Fig. 13. Fourier trasform of Fig.13. 

Fig. 14. shows the simulation results of the quantization 
effect on the outputs of the individual multiplier components. 
Fixed-point number representation and 12 bit quantization 
were performed in the simulation, but this number can be 
changed by rewriting the constant "nb" in the simulation 
source code. 

Fig. 14. Limit cycle effect – observed on weight function (fixed point 12 bits 

– mathematical rounding) 

The absolute value of the Fourier transformation of the 
weight function also shows the quantization noise and the 
limit cycle phenomenon. In the Fig. 15. the limit cycle 

observation is marked by red circle, the quantization noise can 
be observed in the dead band, which is marked in blue. 

 

Fig. 15. Fourier transformation of the wave function shown on Fig.15. 

By using „floor” function (rounding to the lower number) 
on 12-bit wide signed fixed numbers, the quantization noise 
remains, but the limit cycle phenomenon disappears, as shown 
in Fig.16. 

 

Fig. 16. No limit cycle effect observed on weight function (fixed point 12 

bits – “floor” rounding) 

 

The MATLAB® source code of the simulation and the 
system matrix describing the DSP algorithm are not published 
in this article because of length limitations, but they can be 
downloaded from the following location [11]. These files are 
provided “as-is” and can be used freely. 

V. CONCLUSION 

A significant part of DSP algorithms can be described in 
matrix-vector form. The differential equation system defined 
in this way can be effectively simulated in the MATLAB® 
environment. These simulations performed in an environment 
considered as linear can verify the design result, i.e. the 
correctness of the signal flow diagram. The MATLAB® 
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application running in a normal PC environment provides an 
almost linear environment due to the accuracy of the 
numerical representation, but in reality, a lower number 
representation accuracy is available due to the reduced 
computational power available in real time operation. 
Relatively few bits (12, 16, 24 depends on the hardware) and 
often only fixed precision number representation are provided. 
This causes a clearly visible quantification problem, 
especially at the output of the multiplier components. These 
quantization effects can be considered in the linear simulation, 
so the non-linear behavior of the DSP algorithm caused by 
truncation and rounding methods can also be well simulated. 
The quantization noise effect becomes measurable, and the 
stability of the algorithm can also be examined. 

Signal overload may occur at certain points of the 
implemented DSP algorithm due to the limited number of bits 
that can be used for number representation. In digital signal 
processing, an overload - mainly caused by calculation 
overflow - does not result signal distortion, but the collapse of 
the entire DSP algorithm operation. With the help of the time 
domain analysis performed in the MATLAB® environment, 
the dangerous nodes affected by the overflow of the DSP 
algorithm can be detected. After detection, the probability of 
an overflow can be significantly reduced by linear 
transformation of the algorithm. 

A deep analysis of the algorithm is definitely 
recommended as the last phase of the DSP algorithm design. 
After successful simulations the verified algorithm can be 
implemented by using a DSP processor or an FPGA. 
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