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Abstract—This paper considers the lateral control of articu-
lated wheeled vehicles in backward motion. The parameterized
articulated vehicle is composed of a car-like truck and N passive
trailers, resulting in one single steerable axle. First a nonlinear
path tracking control law based on exact linearization of an
offset model is reviewed and the general stability conditions
of such systems are presented. Second, a stability analysis for
some vehicle cases is performed, and verified in simulation. The
possible application of this path tracking control law in real world
articulated vehicles is discussed, and its limitations are shown.

Index Terms—truck-trailer, articulated vehicle, backward mo-
tion, path tracking, nonlinear control, exact linearization, stabi-
lization

I. INTRODUCTION

The area of autonomous driving ranges from the forward
and backward motion of single vehicles to the complex
maneuvering of vehicles with attached trailers. The present
contribution considers the problem of the backward path track-
ing control of autonomous articulated vehicles. The backward
motion of these systems is unstable, resulting in the commonly
known jack-knife phenomenon, making the task of driving
backwards with more than one trailer quite challenging even
for experienced human drivers.

In articulated vehicles, often single-axle mobile robots are
considered as the tractor vehicles [1]. Whereas to represent real
world vehicles with Ackermann steering geometry, modeling
is done through car-like tractors. The class of robots studied
in this contribution are truck-trailer mobile robots, composed
of a car-like robot and a number N of passive, i.e., non-
steered, trailers. Their physical interconnection can be on-axle
or off-axle w.r.t. the preceding vehicles’ rear axle, defining the
hitch point position. A common practice [2] is to distinguish
vehicles between General N-Trailer (GNT), Standard N-Trailer
(SNT) and non-Standard N-Trailer (nSNT), see Table I for the
classification and Fig. 2 for a graphical example.

TABLE I
ARTICULATED VEHICLE CLASSIFICATION

Type Hitch point location
General N-Trailer (GNT) on- and off-axle
Standard N-Trailer (SNT) on-axle
non-Standard N-Trailer (nSNT) off-axle

The reverse motion of articulated vehicles is widely studied
in literature [1], [3]–[5]. In [3], the SNT System is proven to
be flat considering a special linearizing output. A comparison
study between nonlinear and model-free control is done in [6]
and shows promising results for avoiding difficult kinetic mod-
eling with its problematic parameter deviations. A qualitative
overview of different control approaches is shown in [7].

This work extends [8], and therefore continues the review
of the control laws discussed in [9]–[12]. In the first approach,
the nSNT vehicle was considered and transformed via a virtual
vehicle into a SNT vehicle in order to apply exact input-state
linearization on that virtual vehicle, obtaining the control law.
In the cited articles, a solution for the path tracking problem
for some types of tractor-trailer vehicles was found. However,
clear limitations of these methods appear when considering
widely used real commercial road vehicles, like semi-trailers
and road-trains.

II. KINEMATIC VEHICLE MODEL

This section presents the models of a generalized articulated
vehicle used. In order to get an insight into the control problem
in real commercial truck trailer systems, these models are fully
parameterized to resemble the different structure types found
in real vehicles. The studied vehicle is composed of a car-
like tractor and N passive trailers, i.e., their wheels are non-
steerable. Since the movements cover low speed maneuvers
on flat surfaces, a kinematic model is sufficient for the study.

Regarding the generality of the model depicted in Fig. 1,
parameter D changes the hitch point position of the next trailer
with respect to the previous one, in order to represent the
different types of real vehicles, including semi-trailers and
road-trains. Fig. 2 shows the convention used for the values of
D. For on-axle configurations, D is set to zero. There are two
off-axle cases, with negative offset D < 0, if the hitch point
is in front of the axle, and positive offset D > 0, if behind.
As will be shown in Section III, the hitch point position with
respect to the axle center is crucial for the considered control
problem.

Two vehicle models are described: the fixed-frame model,
which describes the vehicle movement on a plane and is
employed in the simulation, and the offset model, used in the
control algorithm.
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Fig. 1. General N-Trailer-System with car-like tractor.

A. Fixed frame model

The derivation of kinematic vehicle models is vastly de-
scribed in literature, e.g. [10]. In this contribution, a compact
vector notation [1] is used for the models. The vehicle model
of a General N-Trailer-System with a car-like tractor in a
fixed Cartesian reference system is shown in Fig. 1. Since
the number of trailers is N , the total number of bodies is
m = N + 1. The front axle of the car-like tractor is steered
and indexed by 0.

The position of the axle centers on the plane are p0 . . .pm,
with the components (pi,1, pi,2), and the orientation of the
axles is described by θ0 . . . θm. L1 is the wheelbase, L2 . . . Lm

is the distance from the hitch point to the wheel axle of the
trailers. The parameter D was previously defined and has to
be specified for D1 . . . Dm−1.

By introducing the tangential vector τ i = cos θie1+sin θie2
and the normal vector νi = − sin θie1 + cos θie2, and after
short calculations, the kinematic model equations follow as

ṗ1,1 = v1 cos θ1 (1)
ṗ1,2 = v1 sin θ1 (2)
ω1 = (v1/L1) tan δ0 (3)

ωi = (1/L1)[v1⟨τ 1,νi⟩ −
i−1∑
j=2

(Lj +Dj)ωj⟨νj ,νi⟩

−D1ω1⟨ν1,νi⟩], i = 2, . . . ,m, (4)

with the translational velocity vi = ṗi = viτ i and the
rotational velocity θ̇i = ωi. Notice the scalar product no-
tation ⟨ , ⟩ used. Let us define here the system state as
x = (p1,1, p1,2, ω1, . . . , ωm)T .

D = 0

D < 0 D > 0

Fig. 2. Convention for hitch point position.

The relation between two consecutive body axle center
positions follows from geometric constraints and is

pi = pi+1 + Li+1τ i+1 +Diτ i. (5)

Finally, the relative orientation of two consecutive bodies to
one another is described by ϕi = θi−θi+1 for i = 1, . . . ,m−1.

Taking the time derivative of (5), the velocity propagation
between two consecutive vehicle bodies can be obtained and
written in matrix notation as(

vi+1

ωi+1

)
=

(
cosϕi Di sinϕi
1

Li+1
sinϕi − Di

Li+1
cosϕi

)
︸ ︷︷ ︸

i+1Mi∈R2×2

(
vi
ωi

)
. (6)

This represents the front-to-back propagation. For the inverse
relation, Di ̸= 0 is needed in order to prevent a singular
matrix, obtaining(

vi
ωi

)
=

(
cosϕi Li+1 sinϕi
1
Di

sinϕi −Li+1

Di
cosϕi

)
︸ ︷︷ ︸

iMi+1

(
vi+1

ωi+1

)
. (7)

The back-to-front velocity propagation for cases where at least
one D = 0 is treated in different ways, e.g. [1], [13].

B. Offset model

For the path-tracking task, it is customary to describe
the movement with respect to the path, since it simplifies
the control problem. Modeling of path-dependent relations is
described e.g. in [1], [10], [14], [15].

In order to develop the offset relations, we introduce the
equivalent virtual steering axles and their angles in the hitch
points that describe the current body movement in Fig. 3. Note
that from (3) and with the virtual steering axles, the relation

θ̇i =
vi
Li

tan δi−1 (8)

follows for each body.
For the backward path tracking, it is convenient to take

axle pm of the last trailer as the reference point of the
vehicle. Fig. 4 shows the last trailer with the relations to the

Li+1

Di

Li

O

1/κi

1/κi+1

δi

Fig. 3. Definition virtual steering axle and angle in grey.
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path. Newly introduced symbols are the curvilinear distance
s along the path, the curvature κ of the path as well as
the instantaneous center O(sd) of the resulting desired circle.
Subscript d denotes the desired values. Therefore, the desired
path point is pd = pp(sd).

The offset parameters are the off-track-distance dos and the
orientation errors θos and ϕos,i,

dos = (pm,1 − pd,1) sin θd + (pm,2 − pd,2) cos θd (9)
θos = θm + π − θd (10)

ϕos,i = ϕi − ϕd, i = 1, . . . ,m− 1. (11)

Since pm lies on the axis described by νd, one gets the
relation ⟨pm − pd, τ d⟩ = 0, from which we can obtain the
relative velocity with respect to the desired path point,

ṡd = − vm cos θos
1− dosκd,m

. (12)

The off-track distance dynamics is obtained by taking the
derivative of d2os = ∥pn − pd∥

2
2 = ⟨pm − pd,pm − pd⟩.

Finally, the time-dependent offset differential equations follow
as

ḋos = −vm sin θos (13)

θ̇os = θ̇m − θ̇d = θ̇m − dθd
dsd

ṡd = ωm + κd,mṡd (14)

ϕ̇os,i = ϕ̇i − ϕ̇d,i ≈ ϕ̇i = θ̇i − θ̇i+1 = ωi − ωi+1. (15)

Note the approximation done in Eq. (15). It follows from the
assumption that feasible paths are built from path segments
with constant curvature and only small changes in curvature
are allowed in the transients, i.e., ϕ̇d,i ≈ 0.

In order to avoid singularities, it is a common practice
to express the motion equations as time-independent, i.e.,
depending on a path variable s. Expressing derivatives in that
path variable can be easily performed by the chain rule.

For the present case, the following time-independent model
equations are obtained, and derivation can be followed from

e1

e2

Lm

τm
νm

Path

s

τ d
νd

dos

1
κd,m

O(sd)

pd

pm

Fig. 4. Offset relations backward motion of last trailer w.r.t. path.

upper equations and [10], [15],

d′os = (1− dosκd,m) tan θos (16)

θ′os = −1− dosκd,m

Lm cos θos
tan δm−1 + κd,m (17)

ϕ′
os,i = −1− dosκd,m

vm cos θos

vi+1

DiLi+1
[Li+1 sinϕi (18)

− (Di + Li+1 cosϕi) tan δi], i = 1, . . . ,m− 1.

The singularities constrain the vehicle dimensions, Li ̸= 0
and Di ̸= 0, as well as the orientation error

cos θos ̸= 0 ⇒ θos /∈ {π
2
+ kπ, k ∈ Z}. (19)

III. CONTROL PROBLEM

Since path tracking, in which the lateral deviation of the
vehicle with respect to the desired path is controlled, is
considered here, longitudinal errors are not analyzed.

The remaining control variable is the steering angle δ0 of the
car-like tractor vehicle. The velocity is set to a value of v1 < 0
for backward movement. Since the virtual steering angles can
be propagated through the vehicle structure with (7), one can
set as a fictive system input the tangent of the virtual steering
angle of the last trailer, uos = tan δm−1. Introducing the state
xos = (xos,1, . . . , xos,n)

T = (dos, θos, ϕos,1, . . . , ϕos,m−1)
T of

dimension n = m+ 1 leads to the following nonlinear offset
system,

x′
os = f(xos) + g(xos)uos (20)
yos = h(xos), (21)

with

f(xos) =



(1− xos,1κd,m) tanxos,2

κd,m

x′
os,3(xos)

...
x′
os,n−1(xos)

− 1−xos,1κd,m

Dm−1 cos xos,2
sin (xos,n + ϕd,m−1)


, (22)

g(xos) =



0

− 1−xos,1κd,m

Lm cos xos,2

0
...
0

1− xos,1κd,m

Dm−1Lm cosxos,2
[Dm−1 · · ·

· · ·+ Lm cos (xos,n + ϕd,m−1)]


(23)

and h(xos) = xos,1, i.e., the output of the system is set to
the off-track distance yos = xos,1 = dos. The symbols f , g :
M −→ Rn represent vector fields and h : M −→ R is a
scalar field, with the open subset M ⊆ Rn.

For this system, a stable backward path tracking controller
is designed by applying the exact linearization technique.
Therefore, the task can be expressed as lim

t→∞
xos(t) = 0.
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An equilibrium of the system is, for instance, a movement
on a circle, following xos = 0. Geometrically, regarding
Fig. 3, one obtains the following relations for that steady state
regime:

1

κi
=

1

κi+1
cosϕi + Li+1 sinϕi (24)

and
ωi+1 = ωi ⇒ vi+1κd,i+1 = viκd,i. (25)

From the system equations for the steady state movement

0 = f(0) + g(0)uos, (26)

the relation for the input in that state is

uos = tan δm−1 = κd,mLm, (27)

and the relation for the relative angles follows as

0 = Li+1 sinϕi − (Di + Li+1 cosϕi) tan δi. (28)

For the exact linearization, one needs to obtain a well-
defined relative degree, [16]–[18]. The relative degree is the
smallest derivative order of the output that depends explicitly
on the input.

A compact form of representation involves Lie derivatives.
Basic definitions are the Lie derivative of a scalar field h along
a vector field f

Lfh(x) = dh(x)f(x) = ⟨dh, f⟩(x) =
n∑

i=1

∂h

∂xi
f i(x), (29)

obtaining again a scalar field. From the differentiation dh(x)
a gradient results

dh(x) =
∂h

∂x
(x) :=

(
∂h

∂x1
(x), . . . ,

∂h

∂xn
(x)

)
. (30)

Computing multiple Lie derivatives along the same vector field
f yields to the recursion

Lk
fh(x) =

∂Lk−1
f h(x)

∂x
f(x) with L0

fh(x) = h(x).

(31)
For a further vector field g, mixed Lie derivatives are

obtained
LgLfh(x) =

∂Lfh(x)

∂x
g(x). (32)

For complicated systems, these Lie derivatives can be com-
puted with high efficiency by algorithmic differentiation [19].

Taking the path parameter derivative of the output yields

y′os = Lfh(xos) + Lgh(xos)uos

= d′os = (1− xos,1κd,m) tanxos,2 (33)

and since the output does not appear in the equation, another
derivative is needed,

y′′os = L2
fh(xos) + LgLfh(xos)uos

= (1− xos,1κd,m)κd,m − (1− xos,1κd,m)2

Lm cos3 xos,2
uos. (34)

The system has a well-defined relative degree of r = 2 for
Lm ̸= 0, xos,1 ̸= 1/κd,m and xos,2 /∈ {π

2 + kπ, k ∈ Z}. For
practical applications, to avoid collisions with obstacles, the
off-track distance of the axle center of the last trailer should be
small enough and the orientation error should be xos,2 ≪ π

2 .
By defining a new input v

y′′os = L2
fh(xos) + LgLfh(xos)uos =: v, (35)

the linearizing feedback results as

uos =
1

LgLfh(xos)

(
v − L2

fh(xos)
)
. (36)

Since the system has a relative degree r < n, the system
is input-output linearizable. Internal dynamics exist and they
will determine the stability of the overall system [20].

In order to further analyze the system, one option is to
compute the Byrnes-Isidori Normal Form as described in [16]
or by the direct method proposed in [18]. This would split
the system in two parts: The first subsystem is linearizable
by feedback and the second system represents the internal
dynamics, not directly dependent of the input.

Having this structure allows finally to analyze the internal
dynamics. Since this process involves many computations, an
alternative approach based on the original system (20) can
be followed [17]. Taking the linearizing feedback (36) and
choosing v as

v = −
r−1∑
k=0

akLk
fh(x) (37)

and placing r zeros s1, . . . , sr on the open left half plane in
r∏

i=1

(s− si)
!
= sr + ar−1s

r−1 + . . .+ a1s+ a0, (38)

we obtain the coefficients ak using Vieta’s formulas and r = 2:

a0 = s1s2 (39)
a1 = −(s1 + s2). (40)

Finally, a stabilizing feedback results

uos =
−1

LgLfh(xos)
[a0h(xos) + a1Lfh(xos) + L2

fh(xos)]

=
Lm cos3 xos,2

(1− xos,1κd,m)2
[a0xos,1+a1(1−xos,1κd,m) tanxos,2

+ (1− xos,1κd,m)κd,m]. (41)

This stabilizes the first subsystem for the equilibrium point
yos = 0. With the relative degree of r = 2 and the output
derivatives, one defines a set Z∗ of xos ∈ Rn that suffices

h(xos) = xos,1 = 0 (42)
Lfh(xos) = (1− xos,1κd,m) tanxos,2 = 0. (43)

For practical reasons, it follows that xos,1 = xos,2 = 0. For
this regime, we obtain a vector field

f∗(xos) = f(xos)− g(xos)
L2
fh(xos)

LgLfh(xos)
(44)
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and finally, the zero dynamics x′
os = f∗(xos) can be expressed

x′
os,1 = 0

x′
os,2 = 0

x′
os,3 = − v2

vmD1L2
[L2 sin (xos,3 + ϕd,1)

− (D1 + L2 cos (xos,3 + ϕd,1)) tan δ1]

... (45)

x′
os,n = − vm

vmDm−1Lm
[Lm sin (xos,n + ϕd,m−1)

− (Dm−1 + Lm cos (xos,n + ϕd,m−1)) tan δm−1] .

For the stability analysis, we linearize (45) around the
equilibrium xos = 0. A Taylor linearization gives us a linear
system that approximates the internal dynamics locally on that
equilibrium point,

x̃′
os = AZx̃os. (46)

Consequently, the jacobian matrix of the zero dynamics is

AZ =
∂f∗

∂xos

∣∣∣∣
xos=0

=



0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

... a33
. . .

...
...

...
... 0

. . . 0 0

0 0
...

. . . an−1n−1 0
0 0 0 · · · 0 ann


(47)

with the components

ai+2i+2 = − vi+1

vmDi
[cosϕd,i + sinϕd,i tan δi] (48)

and i = 1, . . . , n− 2.
The eigenvalues of the matrix AZ are easily obtained. The

dynamics of the first subsystem is described by a double
integrator, both eigenvalues are zero, λ1 = λ2 = 0. For
the stability of the internal dynamics, the remaining n − r
eigenvalues are of interest,

λi = − vi+1

vmDi
[cosϕd,i + sinϕd,i tan δi] . (49)

By making use of the equilibrium relations (24), (25) and (27),
and noting that for a steady state path movement the curvatures
need to have the same sign, these eigenvalues can be simplified
to

λi = − 1

Di
. (50)

The theorem of Hartman-Grobman states that the behavior
of the nonlinear system (45) corresponds to the one of the
linearized system (46) within a neighbourhood around the
equilibrium, if the equilibrium point of the zero dynamics
is hyperbolic. This is the case when the real part of the
eigenvalues is different from zero.

The feedback (36) makes the equilibrium point xos = 0
local asymptotic stable when the eigenvalues of the zero
dynamics have negative real parts, i.e., are located in the left
half of the complex plane.

This analysis shows that the hitch point positions need to
be behind the axles, Di > 0, greatly limiting the vehicle
structures that this approach can stabilize.

We can therefore conclude that, with this algorithm, a stable
controller for the nSNT case is obtained under the condition
of positive hitch offsets, Di > 0, being in consonance with
the results from other publications, e.g. [10].

This means, that this control approach is not suitable for
many vehicles with great practical importance, like semi-
trailers, which have a D < 0, or road-trains, with one D = 0.

Finally, in order to control the vehicle, one propagates uos =
tan δm−1 through the vehicle structure to compute the real
steering angle δ0 of the tractor. The complete algorithm steps
will be shown in the next section for a tractor with two trailers.

IV. RESULTING CONTROL

Here, vehicles with D > 0 comform the nominal case.
Special cases of vehicles where D = 0 or D < 0 are
not considered in this resulting control. The emphasis around
special is from the view of the control problem, since actually
these vehicles are the most common in real world applications.
They will be analyzed in future publications.

Parting from (41), one needs to obtain the feedback for
the kinematic vehicle model (1)-(4). The feedback depends
on the offset values xos,1 and xos,2, computed with (9) and
(10), respectively, as well as the wheelbase Lm and the path
curvature κd,m. The coefficients a0 and a1 are design variables
and defined through (39) and (40).

Having the fictive system input uos = tan δm−1, first we
compute the desired rotational velocity for the last trailer, ωm,
which is expressed as

ωm =
vm
Lm

uos. (51)

Note that in this equation the translational velocity vm is
needed. It can be obtained from (6).

Finally, to compute the steering angle δ0 for the front vehi-
cle, the velocity propagation from the last trailer to the front
vehicle is performed through (7). In this way, the feedback is
expressed in original coordinates, i.e. the fixed frame model,
and the system input δ0 is obtained.

To show the stability of the closed loop system, a vehicle
with two trailers for the nominal case is considered. With the
system state introduced in Section II-A we have

ẋ1 =v1 cosx3

ẋ2 =v1 sinx3

ẋ3 =
v1
L1

tan δ0

ẋ4 =− v1
L1L2

[L1 sin(x4 − x3)

+D1 cos(x4 − x3) tan δ0]

ẋ5 =− v1
L1L2L3

([L1L2 sin(x5 − x3)

+D1L2 cos(x5 − x3) tan δ0]

−(L2 +D2) cos(x5 − x4) [L1 sin(x4 − x3)

+D1 cos(x4 − x3) tan δ0]) .

(52)
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The position of the last trailer is computed through (5) and
the offset relations expressed in vehicle state and path variables
result to

xos,1 =− (x1 −D1 cosx3 − (L2 +D2) cosx4

− L3 cosx5 − pd,1) sin θd

+ (x1 −D1 sinx3 − (L2 +D2) sinx4

− L3 sinx5 − pd,2) cos θd

(53)

and
xos,2 = θos = x5 + π − θd. (54)

The desired rotational velocity for the tractor can be ex-
pressed as

ω1 =
v3

D1D2
[L2 cos(x4 − x3) sin(x5 − x4)

+L2 sin(x4 − x3) cos(x5 − x4)

+uos(D2 sin(x4 − x3) sin(x5 − x4)

+L2 cos(x4 − x3) cos(x5 − x4))] .

(55)

In that equation we need to substitute the instantaneous
translational velocity of the last trailer

v3 =
v1

L1L2
[D1 tan δ0(D2 cos(x4 − x3) sin(x5 − x4)

−L2 sin(x4 − x3) cos(x5 − x4))

+L1D2 sin(x4 − x3) sin(x5 − x4)

+L1L2 cos(x4 − x3) cos(x5 − x4)] .

(56)

and the feedback uos. Finally, fitting everything into (52) we
obtain the closed loop system

ẋ = fCL(x). (57)

For the stability analysis, we will define a stationary regime
to linearize the system about it. We consider a path on the x
axis in positive direction. One obtains the stationary driving
state with x2 = 0, x3 = π, x4 = π und x5 = π, as well
as κd,m = 0 and θd = 0 for the path. The initial errors fade
away and therefore the offset values become xos,1 = 0 and
xos,2 = 0. The linearized system about this regime is

˙̃x = AN
˙̃x (58)

where AN = (aN,1,aN,2,aN,3,aN,4,aN,5) is the Jacobian
matrix. Its columns are

aN,1 = 0, (59)

aN,2 =


0
0

a0L2L3

D1D2
v1

−a0L3

D2
v1

a0v1

 , (60)

aN,3 =


0

−v1
a0D1L2L3+D2

D1D2
v1

−a0D1L3

D2
v1

a0D1v1

 , (61)

aN,4 =


0
0

(L2+D2)a0L2L3−L2−D2

D1D2

− ((L2+D2)a0L3−1)v1
D2

(L2 +D2)a0v1

 , (62)

aN,5 =


0
0

a0L2L
2
3+a1L2L3+L2

D1D2
v1

−a0L
2
3+a1L3+1
D2

v1
(a0L3 + a1)v1

 , (63)

The eigenvalues of that Jacobian matrix are computed from
the zeroes of its characteristic polynomial

0 = det (sI5 −AN)

= −s(v1 −D1s)(v1 −D2s)(a0v
2
1 − a1v1s+ s2)

D1D2
,

(64)

resulting in
s1 = 0,

s2 =
v1
D1

,

s3 =
v1
D2

,

s4 =
a1 −

√
a21 − 4a0
2

v1,

s5 =
a1 +

√
a21 − 4a0
2

v1.

(65)

From the movement of the vehicle on the x axis, x1 grows
continuously and therefore the first eigenvalue is s1 = 0. The
interesting eigenvalues are the remaining ones. Since v1 < 0
for backward motion, s2 and s3 are only in the left complex
half plane if D1, D2 > 0. This was already the stability
condition of the offset system. The eigenvalues s4 and s5
depend on the coefficients a0 and a1, as well as the velocity v1.
Selecting a double real negative design eigenvalue s = s1 = s2
in (39) and (40), the above expressions result in

s4 = −sv1,

s5 = −sv1,
(66)

and therefore they lay in the left complex half plane. This
shows that the closed loop system is stable for this driving
regime. The behaviour of this system on different path seg-
ments will be analyzed in the simulation section.

Path
tracking PT1

Vehicle
model

x

x

δ0 δ̄0

u

v1

u

Fig. 5. Block diagram of the resulting simulation
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Fig. 6. Path and vehicle axle center positions in xy-Plane, case PC1.

V. SIMULATION RESULTS

A series of simulations were performed in order to verify
the results and evaluate the performance of the control law.
To approximate the actuator dynamics, a first order delay with
time constant T = 0.25 s was interposed between the control
output and the vehicle model input. This delayed steering angle
is denoted as δ̄0. The control system was tested for a vehicle
with two trailers with the dimensions L1 = 4m, L2 = L3 =
5m and D1 = D2 = 1m and the constraint |δ0,max| = π/4.
Fig. 5 shows the simulation setup.

Common scenarios for testing the performance are straight
lines with initial error or eight-shaped curves, to show the
behavior with varying curvature. A straight path scenario with
different design poles was previously discussed in [8]. In this
contribution we will focus on a more dynamic path to show the
influence of varying curvature on the control performance. The
path considered is an eight-shape composed of two circles with
radius 80m and circle centers’ x-coordinates ±1.2 · 80m =
±96m, connected through the inner tangents. That implies
the path curvature not to be continuous, i.e. there are curvature
steps for the path in the transitions circle-straight segment and
viceversa. To evaluate the simulation results, it is essential
to keep this disturbance in mind. The desired path starts at
(0, 0) in the direction of the second quadrant and is shown
in Fig. 6. Highlighted regions are the curved path segments.
From (38) we obtain the stabilizing coefficients a0 = s1s2 and
a1 = −(s1 + s2). Two combinations were tested, PC1 with
s1 = s2 = −0.1 and PC2 with s1 = s2 = −0.2.

The initial position of the vehicle shows backwards in
path direction with an initial off track error. Path tracking
performance for both poles is analyzed at a driving speed of
v1 = −1.4m/s. The path with the resulting movement of the
vehicle axle centers, excluding p2 to not overload the plot, is
shown in Fig. 6. An examination of the curves shows clearly
that the control law drives the vehicle along the path.

In Fig. 7 one can obseve that it reduces the off-track distance
as well as the orientation error. The jack-knife phenomenon,
i.e. the folding of the vehicle bodies, is prevented aswell, since
the relative orientations are kept ϕ1, ϕ2 ≪ π/2.

The curved segments are highlighted and between t1 ≈ 25 s
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Fig. 7. Vehicle behavior in backward eight-shaped path following
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and t2 ≈ 325 s as well as t3 ≈ 400 s and t4 ≈ 700 s. At these
points in time, the transition between zero curvature and some
value different from zero (and viceversa) occurs, introducing
errors. This results in visible error jumps through all curves.
Although this curvature discontinuities were not considered in
the control algorithm, the vehicle is guided quickly back to
the path proximity and the errors are reduced successfully.

The steering angle shows an expected behaviour, in order
to follow the straight and curved path segments with the last
trailer. E.g. for the steady state in the curve segments it reaches
a quasi-constant value for PC1, while having similar behaviour
but more signal amplitude with PC2. With greater absolute
value of the poles, errors cause bigger control actions. Steering
action for transitioning between path segments with different
curvatures is visible at the mentioned times.

Considering the application on a real actuator, although
the goal is to minimize the distance and orientation error to
the path, which are kept smaller with PC2, the mentioned
chattering is not acceptable and the pole combination PC1 is
preferred.

VI. CONCLUSIONS

In this paper, path tracking in backward motion based on
the exact linearization of a truck with N trailers was reviewed.
For the case of a non-Standard N-Trailer (nSNT) with positive
hitch point positions D > 0 only, a stable controller was found
and its performance was successfully tested in a simulation
for two trailers. Nevertheless, the limitation regarding the
hitch point position excludes important real road vehicle
types. Therefore, relaxing the structural vehicle limitations by
overcoming the unstable zero dynamics is the key subject of
upcoming research.

Based on the results found in this paper, a promising
approach is to convert the real vehicle into a virtual one that
keeps the condition D > 0 and apply the stabilizing control
law on that virtual vehicle. Afterwards, the found control is
converted back into the real vehicle steering angle. The goal
for upcoming publications is to show that the adapted control
algorithm is able to guide real world vehicle types, such as
semi-trailers (D < 0) and road-trains (D = 0).

Furthermore, the algorithms will be verified further on
different paths in simulation and in an automated vehicle
laboratory, the Fraunhofer IVI DriveLab previously presented
in [21]. It includes vehicles of the semi-trailer type and
shows the influence of noise and actuator dynamics. This
demonstrator allows to test driving algorithms in a secure and
replicable environment.

After successful trials in the DriveLab, the application on
a real automated 18 t truck, the Fraunhofer IVI AutoTruck, is
planned. While this truck is capable of driving autonomously,
the missions are planned and managed on an online yard
automation software called helyOS, presented in [22].

In addition, aspects such as input saturation or mechanical
limitations like the maximum relative angle between two
vehicle parts so as not to collide should be considered before
the implementation in real world applications, e.g. [5], [23].
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