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Abstract— The study advances microorganism image 

classification through a hybrid approach that integrates a 

Convolutional Neural Network (CNN), modified from the 

VGG19 architecture, with an ensemble model powered by H2O 

AutoML. Employing data augmentation and feature extraction, 
the approach enhances performance on a dataset encapsulating 

a broad spectrum of microorganism classes. The CNN model 

shows significant accuracy enhancements in complex bacteria 

classes, as depicted by the confusion matrix. Concurrently, the 

AutoML ensemble delivers comparable accuracy, notably in 
some classes where CNNs struggles. This research highlights the 

complementary strengths of deep learning and AutoML, 

demonstrating their impact in achieving high-precision 

microorganism recognition. Such advancements promise to 

significantly benefit bioinformatics and diagnostic applications, 
addressing the complexity of multi-class image classification 

tasks. The results indicate a successful combination of CNN and 

AutoML methodologies, setting a benchmark in automated 

microorganism classification, and also showcase the unique 

contributions and nuances of each method. 

Keywords— CNN, AutoML, microorganism, transfer learning  

I. INTRODUCTION 

 Microorganisms play a critical role in both environmental 
sustainability and human health, influencing everything from 

ecosystem functioning to disease pathology. Efficient and 
accurate classification of microorganisms is vital for 

numerous scientific and medical applications, including 
monitoring water quality, enhancing agricultural productivity, 

and controlling infectious diseases [1]. Traditional methods 

for identifying microorganisms often rely on labor-intensive 
processes that require specialized knowledge and are time-

consuming [1]. With the advent of advanced computational 
techniques, there has been a significant shift toward 

automating these processes using image processing and 

machine learning [2]. 

The problem addressed in this research lies in the 

complexity and variability of microorganism images, which 
can challenge traditional classification methods. These 

difficulties are compounded by the subtle differences among 
microorganism classes that require high precision and 

accuracy to differentiate effectively [3]. In light of this, our 
study proposes a novel approach by leveraging a combination 

 
1 “VGG16 and VGG19 (keras.io)”, accessed on 28th of May, 2024, https://keras.io/api/applications/vgg/ 
2 “H2O AutoML”, accessed on 28th of May, 2024, https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html 

of deep learning models and automated machine learning 

(AutoML) to enhance classification accuracy and efficiency. 

The primary goal of this study is to investigate the 

combined effects of utilizing deep learning architectures, 
specifically emphasizing the use of transfer learning with the 

VGG19 model, in conjunction with AutoML technologies. 

This innovative integration is designed to significantly 
enhance the model's capability for extracting relevant features 

from complex microorganism images, while also automating 
the process of model configuration. Transfer learning, in this 

context, leverages the pre-trained VGG19 network—
originally developed for large-scale image recognition 

tasks1—to provide a robust architecture that is already trained 
to discern detailed patterns and textures in images. This 

approach allows our model to capitalize on the pre-existing, 

high-level feature recognition capabilities of VGG19, which 
is then fine-tuned to the specific microorganism classification 

nuances. 

By integrating AutoML into this framework, the study 

further aims to streamline the optimization process, enabling 
the model to automatically select the most effective 

algorithms and hyperparameters specific to our dataset and 

classification objectives. This dual approach not only reduces 
the manual effort typically required in traditional machine 

learning model development but also enhances the scalability 
and adaptability of the model. The AutoML layer works 

iteratively to refine and adjust the model's pa rameters, 
continually learning and evolving to improve performance 

based on the data outcomes2.  

The synergy between the deep learning capabilities, the 
VGG19 model and the automation provided by AutoML holds 

the promise of developing a classification system that is not 
only accurate but also efficient in handling the vast diversity 

and complexity of microorganism images. This research aims 
to test the effectiveness of this integrated approach, setting a 

new standard for how advanced learning algorithms can be 

combined to tackle specific scientific challenges in the field of 

microbiology. 

 The proposed study will start with the current literature 
status, followed by the process of creating the model and a 

thorough results analysis. 
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II. CURRENT STUDIES 

The classification of microorganisms using computational 

methods has seen substantial progress in recent years, driven 
by the integration of various machine learning techniques and 

deep learning architectures. Current studies in this domain 
often explore a  mix of traditional machine learning 

approaches, such as Support Vector Machines (SVM), and 

more contemporary deep learning techniques, including 
Convolutional Neural Networks (CNNs), as seen in [4], and 

transfer learning with architectures like ResNet and VGG. 

In earlier works, classic machine learning algorithms like 

SVM were extensively utilized for image classification tasks, 
including microorganism identification. These methods were 

favored for their ability to model non-linear decision 

boundaries. However, the main limitation of such approaches 
lies in their dependency on manual feature extraction and 

selection, which can be labor-intensive and may not capture 
the complex patterns in microorganism ima ges effectively, 

even if together with image preprocessing they can be quite 
effective, as seen in [5], where an accuracy of 97% was 

obtained. Also, in [6], the authors achieved a 98% accuracy 

with various machine learning techniques as SVM and 

Random Forest. 

With the advent of deep learning, CNNs have become the 
cornerstone for image analysis tasks due to their ability to 

automatically learn hierarchical features from the data. In the 
context of microorganism classification, CNNs outperform 

traditional machine learning methods significantly by learning 
increasingly complex patterns directly from the images, 

leading to more robust and accurate classification. Studies 

leveraging CNNs have shown remarkable success, 
demonstrating their superiority in handling large datasets with 

high variability among image features, a  significant example 
being [7], where for certain bacteria categories, there was a 

93.01% accuracy obtained. 

More recently, the application of transfer learning, or deep 

transfer learning [8], particularly using pre-trained networks 

like VGG, AlexNet [9] and ResNet, has been a game-changer 
in the field, as mentioned also in [2], where the performance 

of different networks is compared. These networks, which 
were initially trained on vast datasets like ImageNet, are adept 

at capturing intricate features in images, which can be 
effectively transferred to the task of microorganism 

classification. By fine-tuning these pre-trained models to 

specific datasets, researchers have been able to achieve high 
accuracy rates with models trained from scratch, as it can be 

seen in [4], where the authors used ResNet, and CNN, and 

obtained a 99.2% accuracy. 

There are also hybrid methods that combine traditional 
machine learning techniques with transfer learning to enhance 

classification performance further. For example, reference 

[11] proposed a hybrid model that integrates multiple feature 
selection methods with transfer learning for bacterial 

classification. In this study, DenseNet201 was used as a 
feature extractor, and the best features were selected using 

four different feature selection algorithms before being 
classified with a Support Vector Machine (SVM). The 

experimental results demonstrated remarkable performance, 

achieving an accuracy of 99.78%. 

 
3 “Microorganism dataset”, accessed on 15th of May, 2024, https://www.kaggle.com/datasets/mdwaquarazam/microorganism-

image-classification 

The literature clearly indicates a trend towards more 
integrated approaches that combine multiple machine learning 

paradigms to leverage their respective strengths. This 
integration addresses the inherent challenges in 

microorganism classification, such as high intra-class 
variability and inter-class similarity, which demand robust and 

adaptive modeling strategies. The current research seeks to 

build upon these findings by integrating deep learning with 
AutoML, further enhancing the efficiency and accuracy of 

microorganism classification systems. 

III. CREATING THE MODEL 

The workflow involves data augmentation using 
TensorFlow, leveraging a CNN architecture based on VGG19 

for feature extraction, followed by integrating AutoML for 
model selection and hyperparameter tuning. This approach 

enhances microorganism image classification accuracy, 
utilizing advanced machine learning techniques for robust 

performance, as shown in Fig. 1. 

Fig. 1. Model architecture workflow 

A. Dataset 

Fig. 2. The original images from the dataset 

The dataset3 used in this study encompasses a total of 759 
images, systematically organized into 8 distinct classes of 

microorganisms. These images are distributed across eight 
different folders, each dedicated to a specific type of bacteria, 

ensuring a structured approach to data handling and 

processing, some image samples being shown in Fig. 2. The 

classes represented in the dataset are as follows: 
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1. Amoeba 5. Rod Bacteria  

2. Euglena 6. Spherical Bacteria  

3. Hydra 7. Spiral Bacteria  

4. Paramecium 8. Yeast 

 

This varied and well-structured dataset provides a broad 
spectrum of microbial images, which is essential for the 

development and evaluation of advanced image classification 

models. The diversity in the dataset poses unique challenges 
in image recognition, making it an excellent resource for 

testing the effectiveness of combined deep learning 
techniques, including convolutional neural networks, transfer 

learning, and automated machine learning (AutoML). The 
comprehensive representation of different microorganism 

classes facilitates a robust analysis, essential for pushing the 
boundaries of accuracy and efficiency in microorganism 

classification through innovative computational methods. 

B. Prerequisites 

 The research described herein was conducted using 
Python, a versatile programming language favored for its 

robust libraries and frameworks that facilitate efficient 

scientific computing and machine learning. Essential to our 
project was the TensorFlow4  library, particularly its Keras 

API5, which provided the tools necessary to build and train 
advanced deep learning models, including convolutional 

neural networks (CNNs). TensorFlow's ability to process large 
datasets efficiently and its comprehensive support for various 

machine learning operations were invaluable. 

 Additionally, the NumPy6 library played an important role 
by enabling high-performance operations on multi-

dimensional arrays, which are fundamental in handling and 
manipulating the image data used for training our models. The 

Matplotlib 7  library was employed to generate various 
visualizations, including training progress charts and 

confusion matrices, which were critical for analyzing the 

model's performance and understanding the classification 

outcomes. 

 For augmenting our data, TensorFlow's image 
preprocessing functions were utilized to introduce variations 

into the dataset, thereby enhancing the robustness and 
generalization capability of the model. This included 

operations such as random flipping, rota tion, zooming, and 

brightness adjustment, which are critical for a model trained 

on visual data. 

 Moreover, H2O's AutoML8 was integrated to automate the 
process of model selection and hyperparameter tuning, 

streamlining the model development process and ensuring 
optimal performance without extensive manual intervention. 

This combination of Python's powerful libraries and too ls 
formed a comprehensive ecosystem that supported all aspects 

of our machine learning pipeline, from data preprocessing and 

model training to evaluation and validation. 

 
4 “Tensorflow Docs”, accessed on 4th of May, 2024, https://www.tensorflow.org/api_docs 
5 “Keras Docs”, accessed on 4 th of May, 2024, https://keras.io/api/  
6 “Numpy Docs”, accessed on 4th of May, 2024, https://numpy.org/doc/stable/index.html 
7 “Matplotlib Docs”, accessed on 4 th of May, 2024, https://matplotlib.org/ 
8 “H2O AutoML”, accessed on 4th of May, 2024, https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html 

C. Workflow 

The project starts with a crucial stage of data augmentation 
to enhance the dataset's diversity and improve the model's 

generalization capabilities over unseen data. These 

transformation introduced necessary variability into the 
training process, simulating different viewing conditions to 

improve the model's robustness against variations in 

microorganism images. 

Following the augmentation phase, the project leveraged a 
convolutional neural network (CNN) architecture, specifically 

employing the VGG19 model pre-trained on ImageNet as a 

feature extractor. This transfer learning approach utilized 
VGG19’s foundational layers to extract features from the 

microorganism images, while additional convolutional and 
pooling layers were added in order to improve the classifying 

process. The extracted features from the CNN were then fed 

into an AutoML system. 

The integration of AutoML aimed to optimize the final 

classification stages by automatically selecting the best 
models and tuning their hyperparameters. This allowed for an 

efficient exploration of various machine learning algorithms 
and configurations, ensuring the highest accuracy in 

classifying microorganisms across our diverse dataset. This 
structured approach from data preparation through to model 

optimization encapsulates the comprehensive workflow of the 
project, culminating in a robust classification system capable 

of high precision and reliability. 

D. Data augmentation 

Fig. 3. Images after augmentation 

Using TensorFlow, various image augmentation 
techniques were applied, including random flips (both 

horizontal and vertical), rotations (up to 20% of the image 
width), zoom adjustments (up to 10% zoom in or out), 
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translations (shifting images up to 20% vertically or 
horizontally), and modifications in brightness and contrast. 

These transformations increased the number of images 10 
times, and also introduced necessary variability into the 

training process, simulating different viewing conditions, as it 

might be noticed in Fig. 3. 

E. Model Architecture 

The model architecture contains the following elements: 

• CNN Model (with 3 layers and a VGG19 layer) 

• H2O AutoML Model 

F. CNN Model 

 In order to build the initial CNN model the following 

hyperparameters were used: 

 From activation functions perspective, 'ReLU' (Rectified 

Linear Unit) is used for hidden layers due to its efficiency and 
effectiveness in non-linear transformations, reducing the 

likelihood of vanishing gradient problems. Also, 'Softmax' is 

used in the output layer for multi-class classification. 

 Additionally, The model uses the Adam optimizer, 

renowned for its adaptive learning rate capabilities, which 

helps converge faster. 

 As loss function, the network is trained using 
'sparse_categorical_crossentropy', which is suitable for multi-

class classification problems where each class is exclusive. 

 From the training process point of view,  the model is 
trained with a batch size of 32 and for 10 epochs to balance 

between training speed and network performance. 

 The CNN model a rchitecture is presented also in Table I. 

TABLE I.  CNN ARCHITECTURE 

Layer Output Shape 

vgg19 (Functional) (None, 8, 8, 512) 

conv2d_5 (Conv2D) (None, 8, 8, 64) 

batch_normalization_5 
(BatchNormalization) 

(None, 8, 8, 64) 

max_pooling2d_5 
(MaxPooling2D) 

(None, 4, 4, 64) 

conv2d_6 (Conv2D) (None, 4, 4, 128) 

batch_normalization_6 
(BatchNormalization) 

(None, 4, 4, 128) 

max_pooling2d_6 

(MaxPooling2D) 

(None, 2, 2, 128) 

conv2d_7 (Conv2D) (None, 2, 2, 256) 
batch_normalization_7 

(BatchNormalization) 

(None, 2, 2, 256) 

max_pooling2d_7 
(MaxPooling2D) 

(None, 1, 1, 256) 

flatten_2 (Flatten) (None, 256) 

dense_4 (Dense) (None, 1024) 

dropout_2 (Dropout) (None, 1024) 

dense_5 (Dense) (None, 512) 

dropout_3 (Dropout) (None, 512) 
dense_6 (Dense) (None, 8) 

Total params 21, 482, 248 

Trainable params 1, 456, 968 

Non-trainable params 20, 025, 280 

 

The Convolutional Neural Network (CNN) designed for 

this project is built upon the VGG19 architecture, renowned 
for its effectiveness in large-scale image recognition. The 

VGG19 model, utilized as the foundational feature extractor, 

is pre-trained on the ImageNet dataset, which provides a 
robust starting point due to its extensive training on a wide 

range of images. In this application, the model is configured 
with ”include_top=False” to discard the fully connected 

output layers, making it adaptable for fea ture extraction in 
microorganism classification. The input to the VGG19 base is 

set to accept images of size 256x256 pixels with three 

channels (RGB). 

Following the base VGG19 layers, the network extends 

with several custom layers tailored to enhance the feature 
extraction capabilities specific to microorganism 

classification: 

1. Convolutional Layers: The first of these is a 

convolutional layer with 64 filters of size 3x3, using 'relu' 
activation for non-linear processing, and 'same' padding to 

maintain the spatial dimensions of the output. This layer is 

followed by batch normalization to stabilize and accelerate the 
training process. A max pooling layer with a 2x2 window is 

then applied to reduce the spatial dimensions, thereby 
increasing the field of view of subsequent convolutional 

layers. 

2. Additional Conv Layers: This pattern is repeated 

with increasing complexity; the second convolutional layer 

uses 128 filters, and the third uses 256 filters, each followed 
by batch normalization and max pooling. These layers 

progressively refine the fea ture maps, focusing on higher-

level features as the depth increases. 

3. Flattening: Post convolutional processing, the 
network flattens the three-dimensional feature maps into a 

one-dimensional vector. This transformation prepares the data 

for entry into the dense layers, where classification decisions 

are made. 

4. Dense Layers and Regularization: The first dense 
layer has 1024 neurons, followed by a dropout layer with a 

rate of 0.5 to prevent overfitting by randomly setting input 
units to 0 during training. This is essential to ensure 

generalization to new, unseen data. A similar setup with 512 
neurons in the second dense layer reinforces the network's 

ability to learn complex patterns from the data. 

5. Output Layer: The final layer is a dense layer with a 
number of neurons equal to the number of classes (8 different 

types of microorganisms), using softmax activation. This 
layer outputs a probability distribution over the classes, 

facilitating a clear classification decision. 

G. AutoML Integration 

 In the research project, the methodology for extracting and 
utilizing features from a custom-tailored convolutional neural 

network (CNN) model is a key element of our approach to 
classifying microorganisms. This model, which builds upon 

the foundational VGG19 architecture, has been modified to 

enhance its capability for the specific task of microorganism 
classification. To achieve this, the model incorporates 

additional convolutional, normalization, and dense layers, 
tailoring it to effectively capture the unique features of 

microorganism images. 

The feature extraction process is designed to capture deep, 

informative features from the neural network at a  crucial 

juncture just before the final classification decisions are made. 
Specifically, we extract features from an intermediate layer of 

the CNN, the 5th layer from the bottom. This particular layer 
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is chosen because it represents a point in the model where the 
data has been significantly transformed and refined, distilling 

essential information necessary for classification.  

Once these features are extracted, they are reshaped and 

prepared for analysis using an automated machine learning 
(AutoML) framework. This integration is crucial as it 

leverages the power of AutoML to handle the complex task of 

model selection and optimization. AutoML explores a variety 
of machine learning models and their configurations, 

automatically tuning them to find the optimal solution for the 
classification problem. It evaluates numerous models, namely 

20, adjusting their parameters to maximize performance based 

on the extracted features. 

 This automated process not only enhances the efficiency 
of the model development cycle but also significantly 

improves the robustness and accuracy of the classification 

system. By using AutoML, the project benefits from the 
ability to quickly and effectively determine the best models 

without manual intervention, ensuring that the final 
classification model is both highly accurate and tailored to the 

specifics of the dataset. The architecture of the leader model 

is described in Table II. 

TABLE II.  AUTOML MODEL ARCHITECTURE 

Model Characteristics Value 

Number of Trees 35 

Number of Internal Trees 280 

Model Size in Bytes 61,256 

Minimum Depth 3 

Maximum Depth 6 

Mean Depth 5.95357 

Minimum Leaves 6 

Maximum Leaves 23 

Mean per class error 0.25 
Logloss 0.75 

Root Mean Squared Root 0.47 

Mean Squared Root Error 0.22 

 

The ensemble model summarized in the table above, 

which is identified as a Gradient Boosting Machine (GBM), 

showcases a sophisticated tree-based structure, optimized via 
the H2O AutoML framework. With a total of 35 primary trees 

and an extended internal configuration of 280 trees, this GBM 
architecture is specifically designed to handle complex 

classification tasks effectively. The ensemble occupies a 
considerable size in memory (approximately 61,256 bytes), 

indicating its capacity to incorporate a substantial amount of 

learned information from the training data. 

The tree depths in this GBM vary from a minimum of 3 to 

a maximum of 6, with an average depth close to 6. This 
indicates a balanced approach to learning, where the model is 

deep enough to capture relevant patterns and interactions in 
the data without becoming overly complex, which could lead 

to overfitting. The range of leaves per tree—from 6 to 23 with 
an average of approximately 12.72—suggests that the model 

is capable of detailed data segmentation, allowing for nuanced 

decision-making processes. This structure helps the GBM in 
delineating fine distinctions within the microorganism classes, 

ultimately contributing to its robust predictive performance. 
This detailed and well-rounded approach ensures that the 

leader model is not only highly accurate but also retains a 

considerable degree of interpretability within its predictions. 

IV. RESULTS 

In this section, we will compare the confusion matrices of 

the initial CNN model, and the  AutoML resulted model. 

A. CNN Results 

Table III, illustrates the confusion matrix resulted from the 
initial CNN model, all the microorganisms’ classes being 

labeled from 0 to 7, and the values are in percentages.   

TABLE III.  CNN CONFUSION MATRIX 

Actual \ 

Predicted 
0 1 2 3 4 5 6 7 

0 80 0 0 0 20 0 0 0 

1 0 81.8 0 0.99 0 0.99 0 0 

2 0 0 100 0 0 0 0 0 

3 0 0 0 100 0 0 0 0 

4 0 11.1 0 0 55.5 22.2 11.1 0 

5 0 0 0 0 0 100 0 0 

6 0 0 0 0 0 10 90 0 

7 0 16.6 0 33.3 0 0 0 50 

  

 The model excels at classifying Hydra, Paramecium, and 
Spherical Bacteria, indicating that features specific to these 

classes are well-learned by the CNN. 

 Rod Bacteria and Yeast show considerable confusion with 

other classes, suggesting that the features distinguishing these 

microorganisms are not being captured effectively. 

Fig. 4. Accuracy across training and validation 

In the graph, from Fig. 4, it can be noticed that both 
training and validation accuracy steadily increase, indicating 

effective learning and generalization. The slight fluctuations 

in validation accuracy suggest minor overfitting, but overall, 

the trend is positive. 

Fig. 5. Loss across training and validation 
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In the graph from Fig. 5, it can be noticed that both training 
and validation loss decrease consistently, though validation 

loss shows some fluctuations. This indicates the model is 

effectively minimizing errors on both training and unseen data 

B. AutoML Results 

Table IV, illustrates the confusion matrix resulted from the 

AutoML model, all the microorganisms classes being labeled 

from 0 to 7, and the values are in percentages.  

TABLE IV.  AUTOML CONFUSION MATRIX 

Actual \ 
Predicted 

0 1 2 3 4 5 6 7 

0 60 0 20 0 20 0 0 0 

1 0 100 0 0 0 0 0 0 

2 0 0 85.7 0 14.3 0 0 0 

3 0 0 0 100 0 0 0 0 

4 0 0 22.2 0 77.8 0 0 0 

5 0 0 0 0 0 100 0 0 

6 0 0 0 0 0 0 100 0 

7 16.7 16.7 16.7 0 0 0 0 50 

  

 The model excels at classifying Euglena, Paramecium, 
Spherical Bacteria, and Spiral Bacteria, which suggests that 

features specific to these classes are well-learned by the 

AutoML model. 

 Yeast, along with some difficulties in Amoeba and Rod 

Bacteria, show significant confusion with other classes, 
suggesting that the distinguishing features of these 

microorganisms are not being captured as effectively.  

C. Comparison between CNN and AutoML model 

In this section, we analyze the performance of the 
Convolutional Neural Network (CNN) and AutoML models 

using three key metrics: precision, recall, and F1-score. These 
metrics provide a comprehensive evaluation of the models' 

classification capabilities across different microorganism 

classes. The calculations are based on the confusion matrices, 
expressed in percentages from Table III, Table IV, being 

derived from the following formulas [9]: 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (1) 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2) 

F1-score = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (3) 

where TP (true positives), TN (true negatives), FP (false 

positives), FN (false negatives) 

Fig. 6. Precision comparison by class  

Precision measures how many of the predicted positive 
instances are actually positive [12]. A high precision indicates 

that the model makes few false positive errors. In Fig. 6, both 
CNN and AutoML models have high precision for most 

classes. The precision for the Yeast class is particularly high 
for both models, indicating that when they predict Yeast, they 

are usually correct. 

 

 

Fig. 7. Recall comparison by class  

Recall measures how many of the actual positive instances 
are correctly identified by the model [9]. High recall indicates 

that the model makes few false negative errors. In Fig. 7, the 
recall varies more between the models compared to precision. 

For example, the CNN model shows better recall for the 

Amoeba class, while the AutoML model shows better recall 
for Rod Bacteria. Both models have moderate recall for the 

Yeast class, indicating they miss a significant number of 

actual Yeast instances. 

Fig. 8. F1-score comparison by class 

The F1-score combines precision and recall to provide a 

single performance metric, especially useful when the class 

distribution is imbalanced [12]. A higher F1-score indicates a 
better balance between precision and recall. In this graph, both 

models generally perform well across most classes. In Fig. 8, 
the F1-score for the Yeast class is lower, reflecting the 

challenges both models face in balancing precision and recall 
for this class. The AutoML model tends to have a slightly 

better F1-score for Rod Bacteria and Spiral Bacteria, 

indicating a more balanced performance for these classes. 

D. Discussions 

In the comparison of bacterial classification accuracies 

achieved across various studies, a  range of methodologies and 

results are evident. Reference [4] achieved a classification 
accuracy of 94.22% for rod-shaped bacteria using deep 

learning architectures. In contrast, our approach utilizing 
CNN and AutoML achieved an accuracy of 77.8% for the 
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same class. Similarly, reference [5] reported a 97% accuracy 
for the classification of morphological changes in rod, 

spherical, and spiral bacteria. In comparison, our method 
achieved 77% for rod bacteria but outperformed with 100% 

accuracy for both spherical and spiral bacteria. 

Moreover, reference [10] obtained accuracy ranges 

between 84% to 94% for the classification of spherical 

bacteria (Cocci) using machine learning techniques, while our 
AutoML approach achieved a perfect accuracy of 100% for 

this class. Reference [8], using a ResNet model, achieved 
99.2% accuracy in classifying yeast images, whereas our 

system's accuracy for yeast classification stands at 50%. 

Fig. 9. Literature comparison 

This comparison, which is illustrated also in Fig. 9,  

highlights the varying degrees of success in bacterial 

classification across different studies and methods, 
emphasizing the potential and limitations of each approach. 

While our CNN and AutoML methods show significant 
strengths in certain categories, they also revea l areas for 

improvement compared to other sophisticated techniques 

employed in the field. 

V. CONCLUSION AND FUTURE DIRECTIONS 

The project aimed to develop and evaluate two machine 

learning approaches for classifying microorganisms based on 
image data: a  convolutional neural network (CNN) and an 

automated machine learning (AutoML) framework. 

Through rigorous analysis and performance comparison, it 

became evident that both the CNN and AutoML models 

excelled in classifying certain microorganisms like Euglena, 
Paramecium, and Spherical Bacteria, each achieving a perfect 

accuracy rate of 100%. These results indicate that the features 
specific to these classes are distinct and effectively captured 

by both approaches. However, while the CNN displayed a 
particular proficiency in classifying Amoeba more accurately, 

the AutoML model demonstrated superior performance in 

handling Rod Bacteria, suggesting its enhanced capability in 
managing classes with more subtle distinguishing 

characteristics. 

Despite these successes, both models encountered 

significant challenges with the Yeast class, managing only a 
50% accuracy rate. This consistent issue across different 

techniques suggests intrinsic complexities within the Yeast 

data, possibly due to feature overlap with other classes or a 

lack of sufficient variability in the training samples. 

The findings underscore the necessity for improved data 
collection and preprocessing, particularly for the 

underperforming classes. Enhancing data quality, employing 
advanced augmentation techniques, or increasing the 

complexity of neural network architectures may help in 
extracting more discriminative features. Moreover, exploring 

diverse AutoML configurations could further optimize model 

performance. 

The project revealed that while both the CNN and 
AutoML are viable for microorganism classification, their 

effectiveness varies depending on the class. This exploration 

highlights the importance of tailored machine learning 
solutions based on the specific challenges and characteristics 

of the data at hand.  
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