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Abstract—It is considered a simple model of contact mechanics
arising from vibroimpact machinery modeling. This model is
deduced using the variational principle of Hamilton applied to
a structure with distributed parameters. Its novelty includes
introduction of the elastic strain induced by the external force
at the boundary. The non-penetrating contact is modeled by the
Hertz-Signorini-Moreau complementarity condition - again in the
simplest case. Next, there is studied asymptotic stability of the
autonomous system, based on the energy Lyapunov functional
and the Barbashin- Krasovskii-LaSalle invariance principle.

Index Terms—vibroimpact mechanics,complementarity condi-
tion,stability,energy Lyapunov functional, Barbashin-Krasovskii-
LaSalle invariance principle.

I. INTRODUCTION AND PROBLEM STATEMENT

Vibroimpact mechanical machinery is of utmost importance
e.g. in civil and mining engineering [1]. The reader is sent to
the aforementioned classical reference on its theory, design
and various applications. It has to be mentioned also that
vibroimpact machinery theory and applications turned to be
an interesting motivation for the development of contact and
non-smooth Mechanics [2]–[4]. Such systems clearly generate
complex oscillatory behavior as a consequence of the complex-
ity of the models.

On the other hand it is an elementary fact that modeling of
the physical systems starts with some kind of decomposition
in simpler subsystems which are modeled separately and
interconnected afterwards. Even analysis and modeling of such
simpler subsystems can turn into a non-easy job.

In this paper we consider the model of a beam with
distributed parameters in linear motion under a driving force at
one boundary. At the other boundary a non-penetrating contact
is present, introducing reverse motion and other phenomena
modeled by non-smooth and/or complementarity systems.
We are thus led to differential equations with discontinuous
R(ight) H(and) S(ide) with their various definitions of the
solutions.

The novelty element in this paper is given by the integration
of the elastic strain in the mechanical model: the driving force
moves the mobile part of the system but also produces elastic
strain. Such “strain losses” will turn to have a stabilizing effect.
From the theoretical point of view this model completion
will allow the use of the “weak” energy Lyapunov functional

combined with the application of the Barbashin-Krasovskii-
LaSalle invariance principle to obtain asymptotic stability.

Summarizing, what is left of the paper is structured as
follows. The model is obtained starting from the Hamilton
variational principle [5]–[7] for systems with distributed pa-
rameters (in this case - beams in linear motion). The key
elements of the approach are given by the choice of the forces
acting on the system together with their expression on the
generalized coordinates. To the model - an I(nitial) B(oundary)
V(alue) P(roblem) with derivative boundary conditions - it is
associated the energy identity. A simple manipulation of the
energy identity and of the boundary conditions will lead to the
energy Lyapunov functional giving the Lyapunov stability in
the metrics induced by the Lyapunov functional itself.

For the asymptotic stability we apply the methodology
from our survey [8]: we associate to the IBVP a system of
F(unctional) D(ifferential) E(quation) with deviated argument
whose solutions are in one-to-one correspondence with the
solution of the IBVP. Applying the Barbashin-Krasovskii-
LaSalle invariance principle to the system of FDE, its asymp-
totic stability is obtained. Due to the one-to-one correspon-
dence of the solutions of the two mathematical objects, asymp-
totic stability is projected back on the solutions of the IBVP.

In the final - Conclusions section - there is discussed the
role of the model for the impact force as well as of the elastic
strain in establishing the stability for system’s equilibrium.

II. THE VARIATIONAL MODELING

Consider the structure of figure 1
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Fig. 1. Distributed parameters and impact
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2.1 We shall apply the variational principle of Hamilton in
order to obtain the model. The Hamilton functional reads

I(t1, t2) =

∫ t2

t1

(Ek(t)− Ep(t) +Wm(t))dt (1)

In (1) we have to express the kinetic energy Ek(t), the poten-
tial energy Ep(t) and the mechanical work Wm(t) associated
to various forces. The kinetic energy Ek(t) is given by

Ek(t) =
1

2

{
m0ż

2
1(t) +m1u

2
t (l, t)+

+

∫ l

0

ρ(x)Γ(x)u2
t (x, t)dx

} (2)

Here mi, i = 0, 1 are lumped masses at system’s boundaries,
ρ(x) is beam’s mass density per beam’s length and Γ(x) -
the cross-section area of the beam at the current coordinate
x ∈ (0, l). It has to be mentioned that u(x, t) - the linear
displacement of the beam - incorporates the elastic strain
ζ(x, t) also i.e. u(x, t) = z1(t) + ζ(x, t).

The potential energy which is stored in the elastic strain is
given by

Ep(t) =
1

2

∫ l

0

Γ(x)E(x)ζ2x(x, t)dx =

=
1

2

∫ l

0

Γ(x)E(x)u2
x(x, t)dx

(3)

Here E(x) is the Young elasticity modulus of the beam.
To express the work Wm(t) we need a “list” of the various

forces acting on the system as follows
• the local restoring force of the driving mechanism

fr(t) = −k0z1(t)− c0ż1(t) (4)

composed of an elastic and a viscous damping com-
ponents, z1(t) being the displacement imposed by the
external active “pushing” force f0(t) - see figure 1;

• the active force f0(t) and the distributed external active
force fa(x, t);

• the active force f ′
0(t) = c′0ż1(t) effectively transmitted to

the load;
• the load (from the “point of view” of the driving mech-

anism) at the mechanical load

f ′′
0 (t) = −c′0ut(0, t) (5)

Observe that f ′
0 and f ′′

0 are virtual forces arising from
the separation of the driving system from the load; they
might be equal in the case of the perfect stiffness - zero
elastic strain;

• the viscous distributed damping force within the beam

fd(x, t) = −c(x)Γ(x)ut(x, t) (6)

with c(x) being the distributed damping coefficient;
• the “wall” reaction at the non-penetrating impact −f1(t)

- see again figure 1;
• the local restoring force at x = l

f ′
r(t) = −k1u(l, t)− c1ut(l, t) (7)

We are now in position to express the mechanical work of
the aforementioned forces as follows
Wm(t) = (f0(t) + fr(t) + f ′′

0 (t))z1(t)+

+(f ′
0(t) + f ′′

0 (t))u(0, t) + (f ′
r(t)− f1(t))u(l, t)+

+

∫ l

0

(fa(x, t) + fd(x, t))u(x, t)dx

(8)
2.2 Consider now the Euler Lagrange variations of the

generalized coordinates with respect to a solution considered
to ensure the extremum of the functional

u(x, t) = ū(x, t) + ες(x, t) , z1(t) = z̄1(t) + εζ1(t) (9)

The Hamiltonian functional reads

Iε(t1, t2) =
1

2

∫ t2

t1

[
m0( ˙̄z1(t) + εζ1(t))

2+

+m1(ūt(l, t) + εςt(l, t))
2+

+

∫ l

0

ρ(x)Γ(x)(ūt(x, t) + εςt(x, t))
2dx

]
dt−

−1

2

∫ t2

t1

∫ l

0

E(x)Γ(x)(ūx(x, t) + εςx(x, t))
2dxdt+

+

∫ t2

t1

[(f0(t) + fr(t) + f ′′
0 (t))(z̄1(t) + εζ1(t))

2+

+(f ′
0(t) + f ′′

0 (t))(ū(0, t) + ες(0, t))+

+(f ′
r(t)− f1(t))(ū(l, t) + ες(l, t))+

+

∫ l

0

(fa(x, t) + fd(x, t))ū((x, t) + ες(x, t))dx

]
dt

(10)
The functional Iε is quadratic in ε hence it has a unique

extremum. The term in ε2 being positive, the extremum is a
minimum. This unique minimum is defined by

d

dt
Iε(t1, t2)|ε=0 = 0 (11)

The condition (11) is leading to the equations of the solutions
ensuring this minimum. Using the integration by parts, the
Fubini theorem and the fact that the Euler-lagrange variations
vanish at t = t1, t = t2, the following system is obtained

ρ(x)Γ(x)utt + c(x)Γ(x)ut − (E(x)Γ(x)ux)x = fa(x, t)

m0z̈1 + c0ż1 + k0z1 + c′0ut(0, t) = f0(t)

E(0)Γ(0)ux(0, t) + c′0(ż1(t)− ut(0, t)) = 0

m1utt(l, t) + c1ut(l, t) + k1u(l, t)+

+E(l)Γ(l)ux(l, t) = −f1(t)
(12)

Equations (12) need to be completed by the so called comple-
mentarity conditions which describe the impact with the “wall”
(obstacle) at x = l. The usual condition is the so called Hertz
Signorini Moreau contact-complementarity condition

0 ≤ f1(t) ⊥ (l − u(l, t)) + γ1ut(l, t) ≥ 0 (13)

In the next section of the paper we shall discuss certain issues
concerning (13).
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III. THE COMPLEMENTARITY HERTZ SIGNORINI MOREAU
CONDITION

Following [4], condition (13) can be translated as

• the standard position condition

f1(t) ≥ 0 ; z2(t)− l ≤ 0 , (l − z2(t))f1(t) = 0 (14)

• the standard velocity condition

f1(t) ≥ 0 ; ż2(t) ≤ 0 , ż2(t)f1(t) = 0 (15)

• the more general linear combination of the position and
velocity conditions

f1(t) ≥ 0 ; l − z2(t)− γ1ż1(t) ≥ 0 ,

(l − z2(t)− γ1ż1(t))f1(t) = 0
(16)

with γ1 > 0.

In the following we shall focus on (15) and write down a
possible solution for the inequalities of (15)

f1 =

{
0 if ż2 ≥ 0

λż2 if ż2 ≤ 0 , λ > 0
(17)

Observe that (17) define a sector restricted function

0 ≤ f1(σ)σ ≤ λσ2 (18)

(see figure 2)

-

-

s

Fig. 2. Sector restricted nonlinearity.

Introduction of the sector restricted functions will allow
to obtain conditions of qualitative behavior (stability, stable
forced oscillations) by applying the methods of the absolute
stability [9], [10]. These conditions will give results which are
valid for an entire class of systems: to each nonlinearity of the
class a corresponding system can be attached.

IV. CONSTANT STEADY STATES AND INHERENT STABILITY

Throughout this paper we shall understand by steady states
those system trajectories which are not defined by initial
conditions but are, mathematically speaking, solutions defined
on the whole real axis. We include here equilibria (which are
constant steady states) but also periodic, almost periodic or
even stochastic oscillations.

In order to discuss constant steady states of (12) we shall let
to zero the time varying forcing terms fa(x, t) and f0(t). Since
we adopted for f1(t) the form (17), we cannot consider it as
forcing. Letting all time derivatives to 0 and taking z2(t) ≡
u(l, t) - as we already did in (14)-(17) - the following steady
state equations are obtained from (12)

(E(x)Γ(x)ūx(x))x = 0 ; k0z̄1 = k0ū(l) = 0

E(0)Γ(0)ūx(0) = 0

k1ū(l) + E(l)Γ(l)ūx(l) = 0

(19)

A straightforward manipulation will give the zero equilibrium

z̄1 = z̄2 = 0 , ū(x) ≡ 0 , 0 ≤ x ≤ l (20)

According to the Stability Postulate of N. G. Četaev, only
stable steady states are observable and measurable. Therefore
it is important to check the inherent stability of the equilibrium
at 0. We shall start from the energy identity: multiplying the
first equation of (12) by ut(x, t) we obtain

ρ(x)Γ(x)uttut + c(x)Γ(x)u2
t − (E(x)Γ(x)ux)xut =

= fa(x, t)ut

To the above inequality we add the identity

(E(x)Γ(x)ux)tx − 1

E(x)Γ(x)
(E(x)Γ(x)ux)×

×(E(x)Γ(x)ux)t ≡ 0

thus obtaining

1

2
Γ(x)

d

dt
[ρ(x)u2

t (x, t) + E(x)u2
x(x, t)]−

−(E(x)Γ(x)ux(x, t)ut(x, t))x ≡ fa(x, t)ut(x, t)

(21)

Integrating (21) with respect to x on (0, l) and taking into
account the boundary conditions in (12), the following identity
is obtained

1

2

d

dt

{
k0z1(t)

2 +m0ż1(t)
2 + k1z2(t)

2 +m1ż2(t)
2+

+

∫ l

0

Γ(x)(ρ(x)u2
t (x, t) + E(x)u2

x(x, t))dx

}
+

+c0ż
2
1(t) + c1ż

2
2(t) + f1(ż2(t))ż2(t)+

+

∫ l

0

c(x)Γ(x)u2
t (x, t)dx ≡ f0(t)ż1(t)+

+

∫ l

0

fa(x, t)ut(x, t)dx

(22)
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For the inherent stability of the zero equilibrium of (12)
we let again the external forces go to zero in (12) and in
(22) also, to observe that (22) suggests the following energy
Lyapunov functional - written along the solutions of (12) with
z2(t) ≡ u(l, t)

V⋆(t) ≡ V(z1(t), z2(t), ż1(t), ż2(t), ut(·, t), ux(·, t)) ≡

≡ 1

2
{k0z21(t) +m0ż

2
1(t) + k1z

2
2(t) +m1ż

2
2(t)+

+

∫ l

0

Γ(x)[ρ(x)u2
t (x, t) + E(x)u2

x(x, t)]dx}
(23)

Then identity (22) becomes - remind that f0(t) ≡ 0, fa(x, t) ≡
0 -

d

dt
V⋆(t) + c0ż

2
1(t) + c1ż

2
2(t) + f1(ż2(t))ż2(t)+

+

∫ l

0

c(x)Γ(x)u2
t (x, t)dx ≡ 0

(24)

The quadratic terms in the LHS of (24) represent damping
terms of the viscous friction (both lumped and distributed); due
to the sector condition (18) the force f1 also has a dissipative
role.

We deduce from (24) that the Lyapunov functional (23) is
non-increasing along system’s solutions - in the autonomous
case - hence the equilibrium is Lyapunov stable in the sense of
the metrics induced by the energy Lyapunov functional itself.

As pointed out by the classics of the stability theory
e.g. [11], [12], the energy Lyapunov function(al) is a weak
one, in the sense that its derivative, being only non-increasing,
does not meet the requirements of the Lyapunov theorem on
asymptotic stability,

Therefore we have to obtain the inherent asymptotic sta-
bility by using the Barbashin-Krasovskii- LaSalle invariance
principle for dynamic systems like (12). The approach of the
present paper - described in the next section - relies on the
Barbashin-Krasovskii-LaSalle invariance principle applied to a
system of differential equations with deviated argument. This
system is associated to (12) and a one-to-one correspondence
is established between the solutions of the two mathematical
objects. Consequently each result obtained for one mathemat-
ical object is projected back on the other.

V. THE SYSTEM OF EQUATIONS WITH DEVIATED
ARGUMENT

5.1 We start by introducing new variables in order to re-
write (12) in the so called t-hyperbolic Friedrichs form [13],
p. 88

ut(x, t) := v(x, t) , E(x)Γ(x)ux(x, t) := w(x, t) (25)

and also z2(t) := u(l, t). Therefore (7) become

ρ(x)Γ(x)vt − wx + c(x)Γ(x)v = fa(x, t)

wt − E(x)Γ(x)vx = 0

m0z̈1 + c0ż1 + k0z1 + c′0v(0, t) = f0(t)

w(0, t) + c′0(ż1(t)− v(0, t)) = 0 ; ż2 = v(l, t)

m1z̈2 + c1ż2 + k1z2 + w(l, t) = −f2(ż2)

(26)

Observe again that the new variable z2(t) := u(l, t) was
already used in the conditions (14)-(16) defining the force
f2(t).

We introduce next the Riemann invariants of the problem
(26) as follows

v(x, t) =
1√
2

[
r+(x, t) +

1

a(x)
r−(x, t)

]
w(x, t) =

1√
2
[−a(x)r+(x, t) + r−(x, t)]

(27)

and the converse relations

r+(x, t) =
1√
2

[
v(x, t)− 1

a(x)
w(x, t)

]
r−(x, t) =

1√
2
[a(x)v(x, t) + w(x, t)]

(28)

where we denoted a(x) : Γ(x)
√

ρ(x)E(x). We re-write (26)
in the Riemann invariants

r+t +
√
E(x)/ρ(x)r+x +

1

2ρ(x)

(
a′(x)

Γ(x)
+ c(x)

)
r++

+
1

2ρ(x)a(x)

(
−a′(x)

Γ(x)
+ c(x)

)
r− =

1√
2
fa(x, t)

r−t −
√

E(x)/ρ(x)r−x +
a(x)

2ρ(x)

(
a′(x)

Γ(x)
+ c(x)

)
r++

+
1

2ρ(x)

(
a′(x)

Γ(x)
+ c(x)

)
r− =

1√
2
a(x)fa(x, t)

m0z̈1 + c0ż1 + k0z1+

+
c′0√
2

(
r+(0, t) +

1

a(0)
r−(0, t)

)
= f0(t)

1√
2
[−a(0)r+(0, t) + r−(0, t)]+

+c′0

[
ż1(t)−

1√
2

(
r+(0, t) +

1

a(0)
r−(0, t)

)]
= 0

ż2 =
1√
2

(
r+(l, t) +

1

a(l)
r−(l, t)

)
m1z̈2 + c1ż2 + k1z2+

+
1√
2
(−a(l)r+(l, t) + r−(l, t)) = −f1(ż2)

(29)
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5.2 In order to simplify further development we assume
homogeneous material for the beam (constant parameters) and
also negligible internal damping of the beam, thus obtaining
the decoupling of the Riemann invariants. Equations (29)
become

r+t +
√
E/ρr+x =

1√
2
fa(x, t)

r−t −
√

E/ρr−x =
1√
2
afa(x, t) (a = Γ

√
ρE)

m0z̈1 + c0ż1 + k0z1+

+
c′0√
2

(
r+(0, t) +

1

a
r−(0, t)

)
= f0(t)

−(c′0 + a)r+(0, t) + (1− c′0/a)r
−(0, t) + c′0

√
2ż1 = 0

r−(l, t) + ar+(l, t)− a
√
2ż2 = 0

m1z̈2 + c1ż2 + k1z2+

+
1√
2
(r+(0, t)− ar−(0, t)) = −f1(ż2)

(30)
Consider now the two families of characteristics of (30) that

is
t±(σ;x, t) = t± (σ − x)

√
ρ/E (31)

and the Riemann invariants along the characteristics crossing
some point (x, t) ∈ (0, l)× R+ (fixed for a while)

φ±(σ) := r±(σ, t± (σ − x)
√

ρ/E) (32)

It follows that

dφ+

dσ
= r+x (σ, t+ (σ − x)

√
ρ/E)+

+
√

ρ/Er+t (σ, t+ (σ − x)
√
ρ/E) =

=
1√
2

√
ρ/Efa(σ, t+ (σ − x)

√
ρ/E)

dφ−

dσ
= r−x (σ, t− (σ − x)

√
ρ/E)−

−
√
ρ/Er−t (σ, t− (σ − x)

√
ρ/E) =

=
a

2

√
ρ/Efa(σ, t− (σ − x)

√
ρ/E)

(33)

We integrate (33) from l to x and from 0 to x respectively to
obtain

φ+(x) = r+(x, t) = r+(l, t+ (l − x)
√

ρ/E)−

−
√

ρ

2E

∫ l

x

fa(σ, t+ (σ − x)
√
ρ/E)dσ

φ−(x) = r−(x, t) = r−(0, t+ x
√
ρ/E)+

+
a

2

√
ρ

E

∫ x

0

fa(σ, t− (σ − x)
√
ρ/E)dσ

(34)

Observe that (34) can be viewed as representation formulae
for the Riemann invariants in function of their boundary
values.

0

t

1  

1a

2a

2b

1b

Fig. 3. Forward and backward characteristics

For those characteristics which can be extended to the entire
interval (0, l) - see figure 3, lines 1a and 2a - (34) will give

r+(0, t) = r+(l, t+ l
√
ρ/E)−

−
√

ρ

2E

∫ l

0

fa(σ, t+ σ
√
ρ/E)dσ

r−(l, t) = r−(0, t+ l
√
ρ/E)+

+
a

2

√
ρ

E

∫ l

0

fa(σ, t+ (l − σ)
√

ρ/E)dσ

(35)

Introduce now the functions

y+(t) := r+(l, t) , y−(t) := r−(0, t)

η±(t) := y±(t+ l
√
ρ/E)

(36)

to obtain from (35)

r+(0, t) = η+(t+ l
√
ρ/E)−

−
√

ρ

2E

∫ l

0

fa(σ, t+ σ
√
ρ/E)dσ

r−(l, t) = η−(t+ l
√
ρ/E)+

+
a

2

√
ρ

E

∫ l

0

fa(σ, t+ (l − σ)
√

ρ/E)dσ

(37)

We substitute now (36) and (37) in the boundary conditions
of (30) to obtain, after certain manipulation
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m0z̈1 +

(
c0 +

(c′0)
2

a+ c′0

)
ż1 + k0z1+

+
c′0
√
2

a+ c′0
η−(t− l

√
ρ/E) = f0(t)

m1z̈2 + (a+ c1)ż2 + k1z1−

−a
√
2η+(t− l

√
ρ/E) + f1(ż2) = 0

η+(t)− a− c′0
a(a+ c′0)

η−(t− l
√
ρ/E) =

c′0
√
2

a+ c′0
ż1+

+

√
ρ

2E

∫ l

0

fa(σ, t+ σ
√

ρ/E)dσ

η−(t) + aη+(t− l
√
ρ/E) = a

√
2ż2−

−a

2

√
ρ

E

∫ l

0

fa(σ, t+ (l − σ)
√

ρ/E)dσ

(38)

The solution of (38) can be constructed by steps on intervals
(kl

√
ρ/E, (k+1)l

√
ρ/E), k = 0,±1,±2 . . . The components

η±(t) will, generally speaking display finite discontinuities at
kl
√
ρ/E if a discontinuity occurs at t = 0 between the initial

condition η±0 (0−) and the solution η±(0+). This discontinuity
is a result of the mismatch between the initial and the boundary
conditions of (26).

On the other hand, the construction by steps of the solution
of (38) requires knowledge of the initial conditions. If the
initial conditions for zi(t), żi(t), i = 1, 2, clearly migrate from
(26) or (12), the initial conditions for η±(t) on (−l

√
ρ/E, 0)

have to be constructed starting from the initial conditions of
(12) on (0, l). Let

u(x, 0) = u0(x) , ut(x, 0) = u1(x) ; 0 ≤ x ≤ l

Then we shall have for (26) that

v(x, 0) = ut(x, 0) = u1(x)

w(x, 0) = E(x)Γ(x)ux(x, 0) = E(x)Γ(x)u′
0(x)

(39)

Also for the Riemann invariants we deduce from (28)

r+(x, 0) =
1√
2

[
u1(x)−

1

a(x)
E(x)Γ(x)Γ(x)u′

0(x)

]
r−(x, 0) =

1√
2
[a(x)u1(x) + E(x)Γ(x)Γ(x)u′

0(x)]

(40)
To obtain the initial conditions for η±(t) on (−l

√
ρ/E, 0)

from (40), we shall consider again the Riemann invariants
along those characteristics which cannot be extended on the
entire interval (0, l) - see the lines 2a, 2b on figure 3; they
cross the axis t = 0 between x = 0 and x = l.

Consider therefore φ±(σ) of (32) satifying (33). The char-
acteristic line t+(σ;x, t) may cross the horizontal (abscissa)

line at σ = x− t
√
E/ρ ∈ (0, l). We integrate the equation of

φ+(σ) between σ = l and σ = x− t
√
E/ρ to obtain first

φ+(x− t
√
E/ρ) = r+(x− t

√
E/ρ, 0) =

= r+(l, t+ (l − x)
√
ρ/E)−

−
√

ρ

2E

∫ l

x−t
√

E/ρ

fa(σ, t+ (σ − x)
√
ρ/E)dσ

(41)

Using the notations of (36), (41) is re-written as

η+(t− x
√
ρ/E) = r+(x− t

√
Eρ)+

+

√
ρ

2E

∫ l

x−t
√

E/ρ

fa(σ, t+ (σ − x)
√
ρ/E)dσ

(42)

Since x − t
√
E/ρ ∈ (0, l), it follows that t − x

√
ρ/E ∈

(−l
√
ρ/E, 0). Denoting θ := t − x

√
ρ/E, we obtain from

(42)

η−0 (θ) = r+0 (−θ
√

E/ρ, 0)+

+

√
ρ

2E

∫ l

−θ
√

E/ρ

fa(σ, θ + σ
√
E/ρ)dσ

(43)

with r+0 (·) taken from (40). In the same way we obtain for
η−0 (θ)

η−0 (θ) = r−0 (l + θ
√
E/ρ, 0)−

−a

2

√
ρ

E

∫ l+θ
√

E/ρ

0

fa(σ, θ + (l − σ)
√
ρ/E)dσ

(44)
with r−0 (·) taken from (40).

Summarizing the development of this Section, we can state
the following result

Theorem 1: Consider the system (26) and let
{zi(t), v(x, t, w(x, t)} be a classical solution of it, defined
by the initial conditions {zi(0), żi(0), u0(x), u1(x)} with
uk(x), k = 0, 1 defined on [0, l]. Let η±(t) be defined
by (36), with the Riemann invariants r±(x, t) defined by
(28). Then {zi(t), η±(t)} is a solution of the system of
functional differential equations with deviated argument (38)
with possible finite discontinuities of η±(t) at kl

√
ρ/E,

k = 0,±1,±2, . . ., defined by the initial conditions
{zi(0), żi(0), η±0 (θ),−l

√
ρ/E ≤ θ < 0}, where η±(θ) are

given by (43), (44) and (40).
Conversely, let {zi(t), η±(t)} be a solution of (38) with

its initial conditions {zi(0), żi(0), η±0 (θ),−l
√

ρ/E ≤ θ <
0}, where η±0 (θ) are sufficiently smooth (e.g. C1). Then
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{zi(t), v(x, t, w(x, t)} is a classical solution of (26) with
{v(x, t), w(x, t)} being defined by (27) and r±(x, t) by

r+(x, t) = η+(t− x
√
ρ/E)−

−
√

ρ

E

∫ l

x

fa(σ, t+ (σ − x)
√
ρ/E)dσ

r−(x, t) = η−(t+ (x− l)
√

ρ/E)+

+
a

2

√
ρ

E

∫ x

0

fa(σ, t+ (x− σ)
√
ρ/E)dσ

(45)

The initial conditions of this solution result for t = 0.
Summarizing, Theorem 1 establishes a one-to-one corre-

spondence between the solutions of (26) (under constant
parameters and zero internal damping c(x) ≡ 0) and the
solutions of (38). As a consequence, any property established
for one of the two mathematical objects is automatically
projected back on the other. In our paper this concerns
asymptotic stability of the zero solution in the autonomous
case (f0(t) ≡ 0, fa(x, t) ≡ 0) with constant parameters and
c(x) ≡ 0. This problem will be tackled in the next section.

VI. THE ASYMPTOTIC STABILITY

In the most general case of (12), in the autonomous case, we
showed existence of the 0 equilibrium and its non-asymptotic
stability in the sense of the metrics induced by the Lyapunov
functional (23) - see the identity (24).

In the case of the constant parameters and with c(x) ≡ 0,
making use of the variables v, w defined by (25), the Lyapunov
functional(23) becomes

V⋆(t) = V(z1(t), z2(t), ż1(t), ż2(t), v(·, t), w(·, t)) ≡

≡ 1

2

{
k0z

2
1(t) +m0ż

2
1(t) + k1z

2
2(t) +m1ż

2
1(t)+

+

∫ l

0

[ρΓv(x, t)2 + (EΓ)−1w(x, t)2]dx

}
(46)

and is subject to

dV⋆

dt
+ c0ż

2
1(t) + c1ż

2
2(t) + f1(ż2(t))ż2(t) ≡ 0 (47)

hence V is non-increasing along the solutions of the au-
tonomous system (12) with constant parameters and c(x) ≡ 0.
Express now V in the variables of the Riemann invariants using
(27) - with a = Γ

√
ρE being also constant

V⋆(t) = V(z1(t), z2(t), ż1(t), ż2(t), r+(·, t), r−(·, t)) ≡

≡ 1

2

{
k0z

2
1(t) +m0ż

2
1(t) + k1z

2
2(t) +m1ż

2
1(t)+

+

∫ l

0

[ρΓr+(x, t)2 + (EΓ)−1r−(x, t)2]dx

}
(48)

which is subject also to (47). It follows that the zero solution
of (30) - with f0(t) ≡ 0, fa(x, t) ≡ 0 - is Lyapunov stable in

the sense of the metrics induced by the Lyapunov functional
(48).

In order to obtain asymptotic stability of the zero equi-
librium of (30) - and of (26) under the acting assumptions
- we shall apply the Barbashin-Krasovskii-LaSalle invariance
principle. The theorem allowing application of the Barbashin-
Krasovskii-LaSalle invariance principle is Theorem 9.8.2 of
[14], p.293 concerning neutral functional differential equa-
tions. Consequently, we shall turn to system (38) which is
of neutral type. This system is considered also under the
assumption that f0(t) ≡ 0, fa(x, t) ≡ 0 and its only
equilibrium will be in this case at the origin.

The Lyapunov functional (48) can be expressed in the
language of (38) by making use of the representation formulae
(45) with f0(t) ≡ 0, fa(x, t) ≡ 0. It results

V⋆(t) = V(z1(t), z2(t), ż1(t), ż2(t), η+(t+ ·), η−(t+ ·)) ≡

≡ 1

2

{
k0z

2
1(t) +m0ż

2
1(t) + k1z

2
2(t) +m1ż

2
1(t)+

+

∫ 0

−l
√

ρ/E

[aη+(t+ θ)2 + (a)−1η−(t+ θ)2]dθ

}
(49)

which is also subject to (47) hence V is non-increasing along
the solutions of (38). Therefore the zero solution of (38) results
Lyapunov stable in the metrics induced by the Lyapunov
functional (49) itself.

In order to obtain asymptotic stability, we shall consider the
set where the derivative of V vanishes: it follows from (47)
that

ż1(t) ≡ ż2(t) ≡ 0 (50)

what gives that z1(t) ≡ const, z2(t) ≡ const. System (38)
restricted to the set defined by (50) will be

k0z̄1 +
c′0
√
2

a+ c′0
η−(t− l

√
ρ/E) = 0

k1z̄2 − aη+(t− l
√
ρ/E) = 0

η+(t)− a− c′0
a(a+ c′0)

η−(t− l
√
ρ/E) = 0

η−(t) + aη+(t− l
√
ρ/E) = 0

(51)

It is not difficult to see that the only solutions of (52) are
the constant ones: they thus define the largest invariant set
included in the set defined by (50). The constant solutions of
(52) are the solutions of the linear homogeneous system

k0z̄1 +
c′0
√
2

a+ c′0
η̄− = 0

k1z̄2 − aη̄+ = 0

η̄+ − a− c′0
a(a+ c′0)

η̄− = 0

η̄− + aη̄+ = 0

(52)
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Its determinant reads

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

k0 0 0
c′0

√
2

a+c′0

0 k1 −a 0

0 0 1 − a−c′0
a(a+c′0)

0 0 a 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

2ak0k1
a+ c′0

̸= 0 (53)

Therefore the only invariant set included in the set defined
by (50) is the equilibrium at the origin since (??) has only
the zero solution because of (53). The Barbashin-Krasovskii-
LaSalle invariance principle expressed by Theorem 9.8.2 of
[14], p.293 will thus give asymptotic stability provided the
difference operator of (38) is asymptotically stable. The dif-
ference operator is defined by the matrix

D =

 0
a−c′0

a(a+c′0)

−a 0

 (54)

and it will result asymptotically (even exponentially) stable
if D has its eigenvalues inside the unit disk of C i.e. with
their modulus less than 1. But this assertion is true since the
characteristic equation of (54) is

λ2 − a− c′0
a+ c′0

= 0

and |(a−c′0)/(a+c′0)| < 1. The zero equilibrium of (38) with
f0(t) ≡ 0, fa(x, t) ≡ 0 is thus asymptotically stable. Making
use of the representation formulae (45) we obtain

lim
t→∞

r+(x, t) = lim
t→∞

r−(x, t) = 0 (55)

hence the zero equilibrium of (30) with f0(t) ≡ 0, fa(x, t) ≡ 0
is also asymptotically stable. Moreover, using (27) we obtain

lim
t→∞

v(x, t) = lim
t→∞

w(x, t) = 0 (56)

what gives asymptotic stability of the zero equilibrium of (26)
with f0(t) ≡ 0, fa(x, t) ≡ 0 in the case of constant parameters
and zero distributed damping c(x) ≡ 0. The results can be
summarized in

Theorem 2: Consider system (26) with zero distributed
damping c(x) ≡ 0, constant parameters ρ, Γ, E and with
the external forces f0(t) ≡ 0, fa(x, t) ≡ 0. Its equilibrium at
0 is globally asymptotically stable and this property holds for
systems (30) and (38) also.

VII. CONCLUSIONS AND PERSPECTIVE

We have deduced in this paper the dynamics of a quite
simple structure in Contact Mechanics, describing vibroim-
pact devices at the basic level. The variational principle of
Hamilton for systems with distributed parameters was applied.
The contact was modeled by a rather simple version of the
complementarity Hertz-Signorini-Moreau condition leading to
a sector restricted nonlinearity. Based on the energy identity,
an energy-like Lyapunov functional has been associated to
the dynamical system viewed without external forces in order

to assess stability of the equilibrium at the origin. Being a
“weak” Lyapunov functional, the energy functional ensured
only the non-asymptotic stability in the metrics induced by
the Lyapunov functional itself. For the asymptotic stability
we used the Barbashin-Krasovskii-LaSalle invariance principle
applied to an associated system of neutral functional differen-
tial equations whose solutions are in one-to-one correspon-
dence with the solutions of the system under analysis. In this
way asymptotic stability was obtained. However application
of the Barbashin-Krasovskii-LaSalle invariance principle was
possible due to asymptotic stability of the difference operator
associated to the system of neutral type. At its turn, this
stability property was obtained by taking into account the
elastic strain in the mechanical system, induced by the acting
external force at the boundary.

The research reported in this paper can be extended in
several directions: we mention but more complicated Hertz-
Signorini-Moreau complementarity conditions the and the
analysis of the system viewed as a system with impulses
- due to the non-penetrating contact. Dynamic steady states
(non-equilibrium) induced by external forces can be also
explored, leading to such mathematical problems as Levinson
dissipativeness, forced periodic or almost periodic oscillations
and other.
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