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Abstract—Model predictive control (MPC) is well established
and has a huge practical relevance in many industrial appli-
cations, especially for chemical or thermal plants. This paper
presents the design and the implementation of a nonlinear model
predictive control aiming at an accurate tracking control of
desired output trajectories under disturbances and uncertainties
for a nonlinear hydrostatic transmission system with multiple
control inputs, which represents a fast mechatronic system. The
benefit of this solution is that it can be easily adapted to either
velocity tracking control or torque tracking control – which is not
the case with alternative model-based approaches. The control
design is based on a numerical optimization within a moving
horizon using the Newton-Raphson method in combination with
the optimization-over-some-variables technique. The unmeasur-
able system state variables as well as the system disturbances
are reconstructed by an unscented Kalman filter which is well
suited for nonlinear systems subject to process and measurement
noise. The proposed control scheme is investigated by simulations
and experimentally validated on a test rig at the Chair of
Mechatronics, University of Rostock. The results indicate the
robustness of the proposed control structure by a high tracking
accuracy despite system disturbances and uncertainties.

Index Terms—Multivariable Systems, Hydrostatic Transmis-
sion, Model Predictive Control, Real-Time Implementation

I. INTRODUCTION

Hydrostatic transmissions (HSTs) offer many advantages
over other forms of power transmissions such as high power
density, a continuously varying and large transmission ratio,
low inertia, reversion of the motion direction without changing
gears, dynamic braking and flexible geometrical arrangements,
cf. [1], [2]. They are widely used in industrial applications like
heavy working machines for construction and agriculture as
well as off-road vehicles, cf. [3]. They are recently employed
also in wind turbines and power-split gearboxes, cf. [4]. HSTs
typically consist of a hydraulic pump and a hydraulic motor
connected in a closed circuit by means of hydraulic hoses.
The pump is coupled to the prime mover and the motor is
coupled to the load. The mechanical power supplied to the
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Fig. 1. Principle structure of an HST system.

system is transformed into hydraulic power and transmitted to
the hydraulic motor in the form of a pressurized fluid flow.
Here, it is transformed back into mechanical power, see Fig.
1. There are several designs of the hydraulic pump and motor.
Among them, the axial piston type with a variable volumetric
displacement is the most popular and provides most versatile
control means for applications, cf. [1]. Thanks to this structure,
the transmission ratio is adjustable by altering the swash-plate
angle of the hydraulic pump, by altering the axial bent angle
of the hydraulic motor or by a simultaneously variation of
both. As a result, both torque and angular velocity of the
hydraulic motor can be controlled independently according to
the purpose of the specific application.

For the tracking control of hydrostatic transmission systems,
several concepts have already been proposed. Many of them
deal with the system as a single-input single-output (SISO)
system as in [5]–[7], in which only the pump displacement
is used for actuation purposes. More advanced control ap-
proaches for multiple-input multiple-output (MIMO) systems
have been developed afterwards. In [8] and [9], a nonlinear
model-based control approach has been proposed and validated
for the tracking control of the angular velocity. For this control,
a second desired output - the difference pressure - is required
and derived from the desired value of the angular velocity. The
result shows a good tracking performance when dealing with
both control inputs for hydraulic pump and motor simultane-
ously. In [16], a decentralized approach has been proposed
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which allows for a significant improvement of the tracking
control performance. In this design, the MIMO system is
decomposed into two SISO subsystems, where the motor
bent-axis angle and the control of pump swash-plate angle
are treated separately. For the tracking control, the desired
trajectory of angular velocity and the desired bent-axis angle
are required, and they are supposed to be synchronized with
respect to each other to guarantee the envisaged transmission
ratio.

This contribution extends the conference paper presented
in [17] with more technical details and a new application
study. A nonlinear model predictive control is investigated for
the tracking of either the angular velocity or the hydraulic
torque by adjusting the control inputs of both displacement
units appropriately: the motor bent-axis angle and the pump
swash-plate angle. This corresponds to the framework of
multiple-input single-output (MISO) system, which allows
for a relaxation of the design of a second output trajectory
as in [16] and avoids a singularity at zero when tracking
the pressure difference as pointed out in [8]. The tracking
performance is assessed by both simulations and experiments.
The corresponding test rig, for which a validated model is
available, has been built up at the Chair of Mechatronics,
University of Rostock, see Fig. 2.

Fig. 2. HST test rig at the Chair of Mechatronics, University of Rostock.

II. SYSTEM MODELLING

The details for the following mathematical model derivation
of the HST can be found in [16]. Therefore, the system
modelling is presented only briefly.

A. Hydraulic Subsystem
Pump Flow Rate: The pump flow rate

qP =
VP (αP )ωP

2π
(1)

is proportional to the angular velocity ωP of the pump. The
nonlinear dependence of the volumetric displacement VP (αP )
on the tilt angle of the swash plate αP is given by

VP (αP ) = NP AP DP tan(αP,max · α̃P ) , (2)

with the normalized swash-plate angle α̃P = αP /αP,max. The
effective piston area AP , the diameter DP of the piston circle,
and the number NP of pistons represent geometric parame-
ters. With ṼP = NPAPDP

2π denoting the maximum volumetric
displacement, the pump flow rate becomes

qP = ṼP tan (αP,max · α̃P )ωP . (3)

Fig. 3. Swash-plate mechanism of the hydraulic pump.

Motor Flow Rate: The hydraulic motor is characterized by
a bent-axis design. The volume flow rate

qM =
VM (αM )ωM

2π
(4)

is proportional to the motor angular velocity ωM . The vol-
umetric displacement of the motor VM (αM ) is subject to a
nonlinear dependence on αM . Given the geometrical parame-
ters NM , AM , and DM , the volume flow rate can be expressed
as

qM = ṼM sin (αM,max · α̃M )ωM . (5)

Here, α̃M = αM/αM,max denotes the normalized bent-
axis angle and ṼM = NMAMDM

2π the maximum volumetric
displacement of the hydraulic motor.

Fig. 4. Bent-axis mechanism of the hydraulic motor.

Dynamics of the difference pressure: To keep the model
order small, the difference pressure between the high and
low pressure sides is introduced as state variable. Assuming
symmetric physical conditions and negligible pressure losses
in the hydraulic hoses, the difference pressure is governed by
the following differential equation

∆ṗ = 2
CH

(
ṼP tan (αP,max.α̃P )ωP

− ṼMsin (αM,max.α̃M )ωM

)
− qU

CH
,

(6)

where the lumped disturbance qU accounts for leakage flows,
and CH stands for the hydraulic capacitance.
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Dynamics of Actuators: For both the pump and the motor,
the dynamics of the displacement units is characterized by a
first-order lag behaviour according to

TuP
˙̃αP + α̃P = kPuP ,

TuM
˙̃αM + α̃M = kMuM .

(7)

Here, TuP and TuM denote the corresponding time constants,
and kP and kM the proportional gains. Moreover, uP and
uM are the inputs of the servo valves. According to the
physical design, both the control inputs and the angles are
bounded: uP ∈ [−1, 1], uM ∈ [ϵM , 1], α̃P ∈ [−1, 1] and
α̃M ∈ [ϵM , 1], ϵM > 0.

B. Mechanical Subsystem

The equation of motion of the HST system is given by the
first-order dynamics

JV ω̇M + dV ωM = ṼM∆p sin(αM,max · α̃M )− τU . (8)

Here dV is the damping coefficient, and JV the mass mo-
ment of inertia. The lumped disturbance torque τU takes into
account load disturbances as well as model uncertainty.

C. The Nonlinear Model of the Overall System

The dynamics of the HST system is obtained by combin-
ing the subsystem descriptions derived above. The nonlinear
fourth-order state space description becomes


˙̃αM

˙̃αP

∆ṗ

ω̇M

 =


− 1

TuM
α̃M + kM

TuM
uM

− 1
TuP

α̃P + kP
TuP

uP

2ṼP
CH

tan(αP )ωP − 2ṼM
CH

sin(αM )ωM − qU
CH

− dV
JV

ωM + ṼM
JV

sin(αM )∆p− τU
JV

 , (9)

where αM = α̃M ·αM,max as well as αP = α̃P ·αP,max are
employed. The two control inputs are given by uP and uM .

III. NONLINEAR MODEL PREDICTIVE CONTROL DESIGN

The design of the nonlinear model predictive control
(NMPC) is based on the nonlinear system model in discrete-
time form, where the future states are predicted within a
finite moving prediction horizon based on the current states
and corresponding input values. The minimization of the cost
function over the prediction horizon results in a suboptimal
input sequence, where only the first control action is applied
to the system. Then, this procedure is repeated for the next
time step.

A. Definition of the Cost Function

The cost function for the NMPC design is usually chosen
in a standard way as a quadratic function of both the system
states and the control inputs. In this application study, however,
it turns out that the specification of a suitable cost function,
which is not in standard form, is crucial for attaining of the
desired tracking performance of the MISO system. The speci-
fication of the cost function is derived from an analysis of the
HST system in operation. As illustrated in Fig. 5, the operation
of a hydrostatic transmission – using both variable volumetric

Fig. 5. Performance characteristics of the HST.

displacements of the pump and the motor simultaneously – can
be divided into two principle operating ranges. In range 1, the
motor displacement is fixed to the maximum value, whereas
the pump displacement increases from zero to the maximum
value. The torque remains constant as the pump displacement
increases, but both power and volume flow are proportional to
the angular velocity. Range 2 begins when the pump reaches
its maximum displacement, and now the motor displacement is
reduced with increasing angular velocity. Within this range, the
torque is inversely proportional to the angular velocity, while
the power remains constant, cf. [1]. In practical applications,
it is usually required to attain the highest torque possible at
the motor shaft, which is equivalent to keeping the motor
displacement as large as possible. This characteristic is, hence,
reflected in the definition of the cost function J for the
prediction horizon comprising N points, with time steps k,
according to

J =
N∑

k=1

[
w1(r − ωM,k)

2 + w2∆ṗ2k

+w3(1− α̃M,k)
2 + w4(p− α̃P,k)

2
]
.

(10)

Here, positive scalars w1, w2, w3, w4 represent the weights for
the individual cost terms, and p ∈ [0, 1] denotes a fixed design
parameter. They all serve as hyperparameters in the predictive
control design. The first term in the cost function penalizes
the error between the output ωM and its reference value r,
the second term has a smoothing effect on the movements of
the displacement units to avoid oscillations in the system. The
deviation of the motor bent-axis angle α̃M from its maximum
is penalized by the third term, whereas the final term, regarding
the pump swash-plate angle α̃P , is a practical measure to
smoothen transitions from one displacement unit to the other.

B. Numerical Optimization Method

The computational burden regarding the online optimization
is still one of the most predominant issues in a real-time
implementation of NMPC, especially for fast mechatronic
applications. In the case of the hydrostatic transmission sys-
tem, the system model consists of four states and two input
variables, which renders the selection of optimization tech-
nique crucial for the real-time implementation of the NMPC
on the available hardware configuration. Aiming at a small
computational effort in real-time, the dynamic optimization
is turned into a static optimization problem by a numerically
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direct evaluation of the cost function with the system dynamics
and using the well-known Newton-Raphson algorithm with its
favourable convergence properties. Here, given box constraints
for the feasible ranges of the inputs and states are also taken
into account within the numerical optimization process.

The implementation involves the discretization of the system
model using numerical methods such as explicit Euler, Euler-
Heun or Runge-Kutta integration. Here, the computational
burden which is related to the discretization methods also
needs to be taken into account to guarantee both real-time
capability and an efficient implementation on the available
hardware. Simulation tests have been conducted, and the
performance of each discretization technique is presented in
Table I. From the statistics in Table I it becomes obvious that,

TABLE I
PERFORMANCE OF DISCRETIZATION METHODS

Discretization Method
Performance Euler Euler-Heun Runge-Kutta

RMS error 4.279e-1 2.571e-1 2.219e-1

in comparison with the explicit Euler method, the Euler-Heun
approach reduces the RMS error by 40%, whereas the Runge-
Kutta method achieves an error reduction by 48%. Given the
larger computational effort that is related to the higher number
of evaluations of the right hand side of the state equations, the
Euler-Heun method is, obviously, a better choice regarding
calculation effort and performance.

Deploying the Euler-Heun method, the system model is
time-discretized in the form of a predictor-corrector scheme.
By defining the state vector x =

[
α̃M α̃P ∆p ωM

]T
and the control input vector u =

[
uM uP

]T
, the

continuous-time nonlinear dynamics function according to (9)

f(x,u) =


− 1

TuM
α̃M + kM

TuM
uM

− 1
TuP

α̃P + kP
TuP

uP

2ṼP
CH

tan(αP )ωP − 2ṼM
CH

sin(αM )ωM − qU
CH

− dV
JV

ωM + ṼM
JV

sin(αM )∆p− τU
JV

 (11)

is replaced by a discrete-time one. The discrete evaluation of
the system variables at each time step k is denoted by xk and
f(xk,uk), and the prediction model becomes

xk+1 = xk + Ts
f (xk,uk) + f (x̄k,uk)

2
, (12)

where
x̄k = xk + Ts f (xk,uk) , (13)

represents an Euler step and Ts is the sampling time. The
cost function J according to (10) accumulates while the future
system behaviour is predicted in the finite horizon.

The application of the Newton-Raphson algorithm is based
on the numerical evaluation of both the gradient and the
Hessian of the cost function J w.r.t. the optimization variables.
In this scheme, the optimization variables are given by the

control input sequences uM,k and uP,k. They are stacked in a
vector uopt as follows

uopt = [u1, ..., uN , uN+1, ..., u2N ] , (14)

where first N control inputs from u1, ..., uN correspond to the
control input uM and the remaining N ones uN+1, ..., u2N

are related to the control input uP . The computation of
the full Hessian matrix would be quite expensive regarding
the dimension of the optimization problem. With N points
of time contained in the prediction horizon, the number of
optimization variables becomes 2N , hence, resulting in a
Hessian matrix of the dimension 2N x 2N . Note that each
element in the control sequence may take an arbitrary value in
the feasible input space independent of the others. Considering
the convexity of the local optimization problem, the calculation
of the full gradient and the full Hessian matrix can be avoided,
and this reduces the computational load significantly. By ap-
plying the optimizing-over-some-variables technique, see [15]
for details, the gradient and the Hessian matrix are reduced
to scalars, i.e., the first and the second derivatives of the cost
function J w.r.t. a selected element in uopt. This allows for a
large number of Newton steps within the given sampling time
interval - even in the case of the fast mechatronic system with
a sampling time of 50 msec. Please note that similar ideas
are also used in stochastic gradient descent. Here, however,
the sequence of optimization variables is predefined. Fig. 6
illustrates the search process in a constrained search space
using the mentioned technique for the simple example of
a convex optimization problem with only two independent
variables. As can be seen, during the iteration one variable
is updated after the other until the search terminates close to
the minimum.

Fig. 6. Illustration of the optimization process following the idea of
optimizing-over-some-variables in the case of two optimization variables.

The numerical evaluation of the first and second derivatives
of the cost function J w.r.t. the j − th element of uopt can
be performed using the central difference formula, cf. [10], as
follows

∂J
∂uj

=
Juj+∆u−Juj−∆u

2∆u ,

∂2J
∂uj

2 =
Juj+∆u−2Juj

+Juj−∆u

∆u2 .

(15)
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Here, ∆u is a small positive number defining the perturbation
of the control element uj , and Juj denotes the corresponding
value of the cost function when the control element uj

is applied to the system. Other notations regarding J are
interpreted in similar manner. The update rule, which takes
into account the inputs constraints, is given by:

u∗
j (i+ 1) = uj(i)− ∂J

∂uj

(
∂2J
∂uj

2

)−1

,

uj(i+ 1) =


a, if u∗

j (i+ 1) < a
u∗
j (i+ 1), if a ≤ u∗

j (i+ 1) ≤ b
b, if u∗

j (i+ 1) > b

(16)

Here, the index i defines the i−th iteration of the optimization
algorithm, and a and b are the lower and upper bounds of the
input variables, respectively.

The state constraints, which are identical to the constraints
of the control inputs in the given case, are applied only to
two variables – the normalized pump swash-plate angle α̃P

and normalized the motor bent-axis angle α̃M . It is worth
noting that these two state variables are governed by first-
order lag systems with proportional gains kP and kM , which
are both equal to 1. This implies that the state constraints are
automatically satisfied as long as the control inputs remain in
their bounded regions.

C. Summary of the Optimization Algorithm

Initialize uopt = 0
Read current state vector xk and disturbances from the UKF
For i = 1 to maximal number of iterations imax

For j = 1 to 2N
• Calculate the derivatives:
⋄ Initialize the cost function J = 0
⋄ Disturb the control element uopt,j with ∆u
⋄ Predict the state xk+1 in the horizon using (12)
⋄ Accumulate the cost function according to (10)
⋄ Calculate gradient and Hessian with (15)

• Update the control input uj(i+ 1) according to (16)
End

End
Apply [uM , uP ]

T = [uopt,1, uopt,N+1]
T to the real system.

D. Stability Analysis

The stability of the proposed NMPC algorithm needs still to
be addressed. Many systematic approaches have been proposed
to guarantee the stability of NMPC algorithms, however,
their success is limited to specific cases due to a lack of
conservativeness in general, cf. [12]. In this study, the cost
function is not given in the standard formulation, which is even
harder for a stability proof in a systematic way. The stability
analysis, instead, aims at finding evidence for the stability of
the designed control structure and the error convergence. For
this purpose, the cost function is considered at time step k
within the prediction horizon, which is defined by

Vk = w1(r − ωM,k)
2 + w2(∆ṗk)

2

+ w3(1− α̃M,k)
2 + w4(p− α̃P,k)

2.
(17)

Since this function is positive definite and radially unbounded,
it can be used as a Lyapunov function candidate. Applying the
theorem of non-monotonic Lyapunov functions for the stability
of discrete-time nonlinear system, see [13] for details, results
in the following stability condition

(Vk+N − Vk) + ...+ (Vk+1 − Vk) < 0. (18)

This criterion is numerically evaluated over the prediction
horizon using the optimal control sequence uopt. As the
criterion is satisfied, Fig. 11 shows strictly negative values,
(18) implies a decreasing Lyapunov function candidate over
the control horizon, which indicates the stability of the control
system.

IV. SYSTEM VARIABLES ESTIMATION

The implementation of the proposed NMPC requires the
feedback of all system states and, moreover, the estimation of
unknown disturbances. Taking into account the high nonlinear-
ity of the system model as well as the effects of disturbances
and measurement noise, an extended Kalman filter would be
suitable for the reconstruction of these system variables. In this
study, however, an unscented Kalman filter (UKF), see [11],
is preferred because it promises superior estimation results.
For this purpose, the state vector in system (9) is extended by
corresponding disturbance models for the load torque and the
leakage volume flow. This leads to

xe =
[
α̃M α̃P ∆p ωM qU τU

]T
, (19)

where two integrators are introduced as disturbance models
according to [

q̇U
τ̇U

]
=

[
0
0

]
. (20)

The measured outputs are given by

ym =

[
∆p

ωM

]
=

[
0 0 1 0 0 0

0 0 0 1 0 0

]
xe = Cmxe. (21)

The system is again discretized by means of the Euler-Heun
method, which results in a similar representation as in (12)

xe,k+1 = xe,k + Ts
Φ (xe,k,uk) + Φ (x̄e,k,uk)

2
, (22)

with the Euler prediction step

x̄e,k = xe,k + Ts Φ (xe,k,uk) . (23)

Here, Φ is a nonlinear function presenting the dynamics of the
extended system

Φ =



− 1
TuM

α̃M,k + kM
TuM

uM,k

− 1
TuP

α̃P,k + kP
TuP

uP,k

2ṼP
CH

tan(αP,k)ωP,k − 2ṼM
CH

sin(αM,k)ωM,k − qU,k

CH

− dV
JV

ωM,k + ṼM
JV

sin(αM,k)∆pk − τU,k

JV

0

0


(24)

Both the state equations and the measurement equation are
extended by mean-free Gaussian white noise processes. The
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details of UKF design follows the ideas presented in [14] as
well as [18] and involves the choice of a set of 2n+ 1 sigma
points

χi,k =


xe,k, i = 0
xe,k + η(

√
Px,k)i, i = 1, ..., n

xe,k − η(
√

Px,k)i, i = n+ 1, ..., 2n,
(25)

where (
√
Px,k)i represents the i − th column of the matrix

square root of Px,k, which can be determined by a Cholesky
decomposition, see [14]. The dimension of the extended state
vector is given by n, and η represents a scaling factor defined
as

η = α2 (n+ κ) . (26)

The constants α and κ characterize the spread of the sigma
points, which is important for the sampling of the propability
density. The associated weights of the states and covariances
are determined according to

wm,i =

{
λ

λ+n , i = 0
1

2(λ+n) , i = 1, ..., 2n

wc,i =

{
λ

λ+n + (1− α2 + β), i = 0

wm,i, i = 1, ..., 2n,

(27)

where λ = η−n holds. Furthermore, β is a scalar related to the
higher-order distribution of the sigma points. As a Gaussian
distribution is assumed, with covariance matrices w.r.t. process
noise Q and measurement noise R, the choice β = 2 is
optimal. Given this setting, the UKF algorithm repeats the
following steps at each sampling time:

• Nonlinear transformation of the sigma points and calcu-
lation of the mean value

χk+1 = χk + TsΦ (xe,k,uk)

x̃e,k+1 =
2n∑
i=0

wm,iχi,k+1

• Prediction of the error covariance matrix

P̃x,k+1 =

2n∑
i=0

wc,i

(
χi,k+1 − x̃e,k+1

) (
χi,k+1 − x̃e,k+1

)T
+Q

• Prediction of the measurements

γk+1 = Cmχk+1

ỹk+1 =
2n∑
i=0

wm,iγi,k+1

• Prediction of the measurement error covariance matrix

Py,k+1 =

2n∑
i=0

wc,i

(
γi,k+1 − ỹk+1

) (
γi,k+1 − ỹk+1

)T
+R

• Calculation of the cross-covariance matrix and update of
the Kalman gain K

Pxy,k+1 =
2n∑
i=0

wc,i (χi,k+1 − x̃e,k+1) (γi,k+1 − ỹk+1)
T

Kk+1 = Pxy,k+1P
−1
y,k+1

• Updates of the state vector and the error covariance
matrix

xe,k+1 = x̃e,k+1 +Kk+1 (yk − ỹk+1)

Px,k+1 = P̃x,k+1 −Kk+1Py,k+1K
T
k+1

The implementation of the estimator-based NMPC is illus-
trated in Fig. 7.

Fig. 7. Implementation of the overall estimator-based NMPC structure.

V. INVESTIGATION OF THE CONTROL STRUCTURE

A. Simulation Results

The simulations are performed using a step size of Ts =
50 msec. Aiming at realistic and reliable simulation results,
the output signals are extended by additive measurement
noise, and the disturbance torque and leakage volume flow
are modelled as follows

qU = 1 · 10−12∆p ,
τU = 0.1JV ω̇M + 7 tanh

(
ωM

0.1

)
.

(28)

The prediction horizon is selected as N = 5 by trial-and-error
but in compliance with the stability analysis. In the sequel,
two alternative control objectives are investigated:

• Tracking of the desired angular velocity ωMd(t)
• Tracking of the desired hydraulic torque τMd(t) of the

motor.
Please not that the flexibility in choosing the controlled vari-
able is a benefit of this predictive control approach. In other
model-based control schemes, larger modifications would be
necessary to attain a similar flexibility. Each of control objec-
tives is studied in two application scenarios:

• In the first scenario, the angular velocity of the hydraulic
pump and the load torque applied to the motor shaft are
constant.

• In the second scenario, both the the angular velocity and
load torque are harmonically varying.

1) Tracking Control of the Angular Velocity: In the first
scenario, the hydraulic pump speed is set to 700 rpm and the
load torque is held constant at 0 Nm. Moreover, the weights
of cost function are selected as w1 = 8e4, w2 = 1e−6, w3 =
10e5, w4 = 11e4 and p = 0.6. Results w.r.t. the trajectory
tracking of the desired motor angular velocity ωMd are shown
in Fig. 8 and Fig. 9. As can be seen, a very high tracking
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Fig. 8. Comparison of simulated values and desired values for the motor
angular velocity ωM .

Fig. 9. Tracking errors w.r.t. the motor angular velocity (simulation results).

performance is achieved with only small errors between the
controlled output and the desired values.

The variations of both displacement units, see Fig. 10,
meet the constraints and show the envisaged characteristic.
When the pump swash-plate angle is still within its admissible
working range, the motor maintains its maximal volume
displacement. If the pump displacement unit reaches the
saturation value, the motor displacement decreases to enlarge
the motor angular velocity for an accurate tracking. The

Fig. 10. Synchronous variations of the displacement units (simulation results).

stability criterion (18) is evaluated during the tracking process.
The numerical results with strictly negative values indicate a
constant decrease of the Lyapunov function candidate over the
prediction horizon during the complete tracking process as can
be seen in Fig. 11.

Fig. 11. Evaluation of NMPC stability criterion, which gives strictly neg-
ative values during the tracking process (simulation results, depicted on a
logarithmic scale).

For the second test scenario, both the hydraulic pump
angular velocity and external load torque are assumed to vary
periodically as shown in Figs. 12 and 13. This mimics the
working conditions in real applications where the drive engine
changes the angular velocity due to external effects or due to
the operator. In addition, the load may also vary due to external
resistances. Such conditions happen frequently in applications
of hydrostatic transmission in wind turbines or in working
machines.

Fig. 12. Variation of the hydraulic pump angular velocity.

Fig. 13. Variation of the external load torque.

Fig. 14 shows the tracking result w.r.t. the angular velocity
under the harmonic variation of both pump angular velocity
and load torque acting on the hydraulic motor shaft. A good
tracking performance is still achievable, however, a small
periodic oscillation is visible in the controlled output.

Fig. 14. Velocity tracking error subject to an external disturbance (simulation
results).

2) Tracking Control of the Hydraulic Torque: For the
objective of hydraulic torque tracking, the first term in the
cost function, which penalizes the tracking error, is modified
accordingly. The altered cost function reads

Jτ =
N∑

k=1

[
wτ1(rτ − τM,k)

2 + wτ2∆ṗ2k

+wτ3(1− α̃M,k)
2 + wτ4(pτ − α̃P,k)

2
]
,

(29)

where the hydraulic torque τM,k is evaluated according to

τM,k = ṼM sin(αM,k)∆pk (30)
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and rτ is the corresponding desired torque value. The corre-
sponding weights are selected as wτ1 = 4.5e7, wτ2 = 5.1e−7,
wτ3 = 1.5e7, wτ4 = 9e6 and pτ = 0.6. Figs. 15 and 16
depicts simulation results for the hydraulic torque tracking
without disturbance impact, i.e. with a constant pump speed
and a vanishing external load torque. Fig. 17 shows the

Fig. 15. Comparison of desired and simulated values for the hydraulic torque.

Fig. 16. Simulated tracking errors of the hydraulic torque without external
disturbances.

tracking result of hydraulic torque tracking under harmonic
variations of both the pump angular velocity and the external
load torque. As can be seen, the controller is still able to
maintain an accurate tracking, however, superposed by a small
remaining oscillation caused by the disturbances.

Fig. 17. Simulated tracking errors of the hydraulic torque subject to harmonic
external disturbances.

B. Experiments on the Test Rig

1) Angular Velocity Tracking Control: The control structure
is implemented on a dedicated test rig using an identical
sampling time of Ts = 50 msec. The parameters implemented
on the test rig are based on simulations but slightly altered for
a better performance: w1 = 2.3e4, w2 = 4e−6, w3 = 3.1e5,
w4 = 2.5e4 and p = 0.6.

Experimental results for the tracking error w.r.t. the angular
velocity are shown in Fig. 19. A little non-smooth change
of the error is visible at the transition between the two
displacement units. The accuracy, however, is still comparable

to the one seen in the simulation study. This indicates a high
quality of the simulation model. Fig. 20 depicts the behaviour
of the motor bent-axis angle and the pump swash-plate angle
in experiments on the real system, which are also similar to
the simulation results.

Fig. 18. Tracking of the motor angular velocity at the test rig.

Fig. 19. Tracking errors for the motor angular velocity at the test rig.

Fig. 20. Variations of the displacement units at the test rig.

For the test case subject to disturbance effects, the tracking
result for the motor angular velocity is shown in Fig. 21.
A slightly increase of the tracking error can be recognized
accompanied by oscillations, similar to the simulation results.
Nevertheless, a high tracking accuracy is still achievable which
indicates the capabilities of the proposed control design.

Fig. 21. Angular velocity tracking error of the real system under an external
disturbance

2) Hydraulic Torque Tracking Control: For the experiments
regarding a tracking of the hydraulic motor torque, the weights
are implemented as follows: wτ1 = 9.3e6, wτ2 = 5.1e−7,
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wτ3 = 5.3e7, wτ4 = 2e6 and pτ = 0.6. The error w.r.t. to the
tracking of the hydraulic torque on the test rig is depicted in
Fig. 23. As can be seen, a highly accurate tracking becomes
possible with a maximum error of only 3% of the input range.
Under the impact of disturbances, a good tracking behaviour

Fig. 22. Tracking of hydraulic torque at the test rig without additional external
disturbances.

Fig. 23. Tracking error of the hydraulic torque at the test rig without additional
external disturbances.

for the hydraulic torque is still maintained as shown in Fig.
24. Similar to the case of angular velocity tracking, however,
the error plot also reveals a slight remaining oscillation caused
by the disturbance.

Fig. 24. Hydraulic torque tracking error at the test rig with additional external
disturbances.

VI. CONCLUSIONS

In this paper, a nonlinear model predictive control has
been implemented on a hydrostatic transmission test rig for
the tracking control of either the desired angular velocity or
the desired hydraulic torque – which offers a high flexibil-
ity for the user. The real-time implementation is based on
a numerical optimization by means of a Newton-Raphson-
type algorithm. To enable the use for this fast mechatronic
system, the algorithm is simplified and tailored to achieve
a small computational effort but, at the same time, to deal
with two constrained input variables for an accurate control
of the highly nonlinear system. The NMPC takes advantage
of state estimates as well as disturbance estimates provided

by an unscented Kalman filter. Simulations and experimental
results from a test rig indicate a high accuracy and a good
performance of the nonlinear control structure that counteracts
efficiently both model uncertainty and external disturbances.
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