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Abstract—In this paper the problem of random disturbance
attenuation capabilities in linear continuous systems is studied. It
is supposed that the system operates under random disturbances
with bounded σ-entropy level. S-entropy norm indicates a
performance index of the continuous system on the set of the
random signals with bounded σ-entropy. This paper presents
a time-domain solution to the calculation of σ-entropy norm
of the continuous linear time-invariant system. S-entropy norm∣∣∣∣∣∣F ∣∣∣∣∣∣

S
is defined after solving coupled matrix equations: one

algebraic Riccati equation, one nonlinear equation over log
determinant function, and two Lyapunov equations.

Index Terms—Stochastic systems, linear systems, system sen-
sitivity, entropy function.

I. INTRODUCTION

The solution of the control problems in linear control
systems should guarantee the internal stability of the closed-
loop system, provide desired robustness and satisfy additional
performance criteria. The external disturbance rejection ca-
pability is one of the most popular performance criteria in
the linear control. In order to solve the disturbance rejection
problem, the designer should define the set of the perturbing
signals as well as a measure of its attenuation. H2 and H∞
norms have become the most popular cost measures in the
feedback optimization. Both norms have physical meaning
with respect to the perturbing signals. Thus, H2 norm indicates
output dispersion of the controlled output in presence of
white Gaussian noise while H∞ norm of the system stands
for the maximum error energy gain for disturbance input
with bounded energy. However, both performance criteria
have substantial drawbacks. An application of H2 control is
quite limited because of in practice external disturbances are
noisy signals with the unknown covariance matrix which can
change during the time. Additionally, systems closed by H2

controllers lack of robustness. Alternatively, H∞ controllers
may lead to excessive energy consumptions if external distur-
bances are slightly correlated noises. This facts put researchers
onto an idea to find compromises between the H2 and H∞
optimization approaches.

In the late 1980 a so-called entropy H∞ control is appeared.
There are a lot of papers devoted to the entropy H∞ control
for continuous and discrete-time systems. The key idea of the
minimum entropy H∞ control approach is to find a solution
to the LQG control problem with an additional constraint on

the system’s entropy. The entropy function, suggested in [1] is
an adaptation of the method of Arov and Krein [2]. Minimum
entropy H∞ control theory have become a simple tradeoff
between the (upper bounds on the) H∞ and LQG objectives
[3]. The H∞ objectives reflect both the robust stability and
performance requirements, where an noise is taken to be of
bounded energy. The tradeoff is against the LQG measure
of performance where the noise is taken to be Gaussian and
white. One can refer to [1], [4]–[6] for more details.

A problem of minimax LQG control, solved in [7] involves
the relative entropy function to describe possible uncertainties
in a plant model. The idea of minimax LQG control is to find
controller that minimizes the linear quadratic functional with
respect to the worst uncertainties in entropy sense.

In contrast with above mentioned theoretic-information
approaches, the anisotropy-based control theory applies the
relative entropy constraint as a set of random colored signals
with unknown covariance. The key term of the anisotropy-
based control theory is a mean anisotropy of the random
signal. The mean anisotropy is a scalar nonnegative param-
eter. It has physical meaning as distance measure between
white Gaussian noise and the random signal itself. The mean
anisotropy also defines a set of the random input disturbances
which “distance” from white Gaussian noise in terms of the
relative entropy does not exceed a given value. Similar to the
H2 and H∞ norms, the anisotropic norm of the linear system
defines a performance index of system on the set of the random
signals with bounded mean anisotropy level. In the anisotropy-
based theory a tradeoff between LQG/H2 and H∞ control is
reached using the mean anisotropy of the input signal as a
restrictive set. In should be noted that the H2 and H∞ norms
are particular cases of the anisotropic norm. A fairly good
survey on this theory is given in [8].

Unfortunately, the anisotropy-based control theory is limited
by discrete-time systems. A further extension idea of the
anisotropy-based control theory to continuous linear systems
has lead to the appearance of σ-entropy theory. This theory
has an another axiomatics that allows to get rid of the relative
entropy and extend a set of the signal under consideration.
The main difference between these theories is that σ-entropy
does not involve any reference signal. Similar to the mean
anisotropy, σ-entropy is a scalar parameter which defines the
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set of input signals in terms of spectral density using the
entropy integral. The σ-entropy norm indicates a performance
index of continuous system on the set of the random signals
with bounded σ-entropy. Similar to the anisotropic norm, the
σ-entropy norm lies between the H2 and H∞ norms of the
system. The development of the analysis and control methods
using σ-entropy constraint seems attractive since it generalizes
all above mentioned approaches within unified framework.

The problem of the σ-entropy analysis of continuous-time
linear systems in the frequency domain has been solved in [9].
In paper [10] a solution to the σ-entropy analysis in time
domain was obtained for strictly proper transfer functions (i.e.
with D = 0). Current research presents the solution of the
σ-entropy analysis of continuous-time linear systems in time
domain in general form, i.e. with D ̸=0. This solution has lead
to a different set of equations.

The rest of the paper is organized as follows. In Section II
necessary background and basic definitions of σ-entropy the-
ory are given. Section III presents the main result of the paper.
Conclusions and future plans are highlighted in Section IV.

II. PRELIMINARY RESULTS AND PROBLEM STATEMENT

We deal with the linear time-invariant system with the state-
space realization given by:{

ẋ(t) = Ax(t) +Bw(t), x(0) = 0,

z(t) = Cx(t) +Dw(t),
(1)

where x(t) ∈ Rn is a system state, z(t) ∈ Rp is an output
signal, w(t) ∈ Rm is an input disturbance. Matrices A ∈
Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m are constant real
matrices. The matrix A is assumed to be Hurwitz and the
stochastic signal w(t) is also assumed to satisfy the following
conditions:

E [w(t)] = 0,

either the L2 norm

∥∥w(t)∥∥
2
=

√√√√√ +∞∫
−∞

E
[∣∣w(t)∣∣2] dt (2)

or the power norm of the random signal

∥∥w(t)∥∥P =

√√√√√ lim
T→∞

1

2T

T∫
−T

E
[∣∣w(t)∣∣2] dt (3)

is finite. Here E[·] is an expected value of (·) and | · | is the
Euclidean norm of a vector.

In accordance with [9], let us generalize the description of
the properties (2 – 3) and define the N norm of the random
signal w(t) as follows:∥∥w(t)∥∥2

N
= N

(
wT(t)w(t)

)
.

In this definition N is the linear operator, which transforms the
Euclidean norm

∣∣w(t)∣∣2 = w(t)Tw(t) into the L2 or power
norm of the stochastic signal w(t) according to following rule:

N(·) =



+∞∫
−∞

E[·] dt if
∥∥w(t)∥∥

2
< ∞

lim
T→∞

1

2T

T∫
−T

E[·] dt if
∥∥w(t)∥∥P < ∞.

Now we can define the correlation convolution Kw(τ) of
the signal w(t) as in [9], [11]

Kw(τ) = N
(
w(t+ τ)wT(t)

)
and the spectral density Sw(ω) of w(t) by using the Fourier
transform of Kw(τ):

Sw(ω) =
1

2π

+∞∫
−∞

Kw(τ) e
−iωτ dτ.

The correlation convolution Kw(τ) can be obtained from
Sw(ω) by the inverse Fourier transform as follows:

Kw(τ) =

+∞∫
−∞

Sw(ω) e
iωτdω.

Then the N norm of w(t) is equal to:

∥∥w(t)∥∥2
N
=

+∞∫
−∞

trSw(ω)dω.

Similarly, the N norm of an output signal z(t) is given by:

∥∥z(t)∥∥2
N
=

+∞∫
−∞

trSz(ω) dω,

where Sz(ω) is the spectral density of z(t). For the system (1)
with the transfer matrix F (s) = C(sI − A)−1B + D the
spectral density Sz(ω) is equal to [12]:

Sz(ω) = F (iω)Sw(ω)F
∗(iω),

here F ∗ is the complex conjugate transpose of a matrix F.
For the system (1) with the input signal (2) or (3), define

the system gain Θ as a ratio of N norm of the system output
z(t) to N norm of the input signal w(t):

Θ =

∥∥z(t)∥∥
N∥∥w(t)∥∥
N

=

√√√√√ +∞∫
−∞

tr
[
Λ(ω)Sw(ω)

]
dω

√√√√√ +∞∫
−∞

trSw(ω) dω

,

where Λ(ω) = F ∗(iω)F (iω).
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Definition 1: Let w(t) be a stochastic input signal with the
finite N norm, then the σ-entropy S(Sw) of the signal w(t)
with the spectral density Sw is defined as:

S(Sw) = − 1

2π

+∞∫
−∞

φ(ω) ln det
mSw(ω)

1

2π

+∞∫
−∞

trSw(ω
′) dω′

dω.

Here φ(ω) =
ω2

0

ω2
0 + ω2

is the function which provides the

convergence of the integral
+∞∫

−∞

ln detSw(ω) dω.

Remark 1: Scalar parameter ω0 is a predefined parameter
which is connected with system bandwidth. In practical ap-
plications ω0 can be chosen 5-10 times larger than system
bandwidth.

Using the above notations we can define the σ-entropy norm
of the system (1).

Definition 2: Let σ⩾ 0 and let w(t) be a stochastic input dis-
turbance with bounded σ-entropy S(Sw). Then the σ-entropy
norm

∣∣∣∣∣∣F ∣∣∣∣∣∣
S

of the system (1) is defined by:∣∣∣∣∣∣F ∣∣∣∣∣∣2
S

= sup
S(Sw)⩽σ

Θ2

= sup
S(Sw)⩽σ

+∞∫
−∞

tr
[
Λ(ω)Sw(ω)

]
dω

+∞∫
−∞

trSw(ω) dω

·
(4)

Based on this definition of the σ-entropy norm, the follow-
ing frequency domain formulae were established in [9].

Theorem 1: [9] Let F be a system with a state-space
realization (1) and let w(t) be a stochastic input disturbance
with bounded σ-entropy. Then for any σ ⩾ 0 the σ-entropy
norm (4) is calculated as:

∣∣∣∣∣∣F ∣∣∣∣∣∣2
S
=

+∞∫
−∞

φ(ω) tr
[
Λ(ω)S⋆(ω)

]
dω

+∞∫
−∞

φ(ω) trS⋆(ω) dω

, (5)

where
S⋆(ω) =

[
I − qΛ(ω)

]−1

is a worst case spectral density of the input disturbance and
q ∈

[
0, ∥F∥−2

∞
)

is the unique solution of the equation:

− 1

2π

+∞∫
−∞

φ(ω) ln det
mφ(ω)S⋆(ω)

1

2π

+∞∫
−∞

φ(ω′) trS⋆(ω
′) dω′

dω = σ. (6)

Theorem 1 presents the frequency domain technique for
calculating the σ-entropy norm. Unfortunately, this approach
does not allow to implement numerical tools for the σ-entropy
analysis of linear systems. Therefore, the problem of the
σ-entropy analysis in time domain has been studied. This
problem is formulated as

Problem 1: For a given system F with the state-space
realization (1) and known σ-entropy level σ⩾ 0 the problem
is to find formulas for calculating the σ-entropy norm

∣∣∣∣∣∣F ∣∣∣∣∣∣
S

in the state space.
For the sake of convenience we will use the following

notation

F =

[
A B
C D

]
for the transfer function F (s) = C(sI − A)−1B +D of the
system (1).

Definition 3: A system with the transfer function Υ(s) is
called the inner (or all-pass) system, if:

Υ∗(iω)Υ(iω) = I.

Lemma 1: [13] Suppose Υ =

[
A B
C D

]
∈ RH∞ and X

is the observability Gramian. Then Υ is inner if and only if:

ATX +XA+ CTC = 0,

DTC +BTX = 0,

DTD = I.

III. MAIN RESULT

Before we formulate the main result of the paper, several
intermediate results should be highlighted. These results are
formulated in lemmas.

Lemma 2: Consider a system G with the state-space reali-

zation G =

[
AG BG

CG DG

]
. Then

1

2π

+∞∫
−∞

ω2
0

ω2
0 + ω2

tr
[
G∗(iω)G(iω)

]
dω =

= tr

{[
BG

DG

]T
Γ

[
BG

DG

]}
, (7)

where Γ is the unique solution of the Lyapunov equation:[
AG 0
CG −ω0I

]T
Γ + Γ

[
AG 0
CG −ω0I

]
+

[
0 0
0 ω2

0 I

]
= 0. (8)

Proof: Consider the following system Ω:

Ω =

[
−ω0I I
ω0I 0

]
=

ω0

ω0 + s
I. (9)
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Then the integral in the left side of (7) can be rewritten as:

+∞∫
−∞

tr

{[
ω0

ω0 + iω
G(iω)

]∗ [
ω0

ω0 + iω
G(iω)

]}
dω =

=

+∞∫
−∞

tr
[
H∗(iω)H(iω)

]
dω, (10)

where

H(s) = Ω(s)G(s) =
ω0

ω0 + s

[
DG + CG

(
sI −AG

)−1
BG

]
.

It is easy to see that:

H = ΩG =

[
−ω0I I
ω0I 0

] [
AG BG

CG DG

]
=

=

 AG 0 BG

CG −ω0I DG

0 ω0I 0

· (11)

The integral in the right hand side of (10) is the scaled
square of the H2 norm of the system H , i.e.

+∞∫
−∞

tr
[
H∗(iω)H(iω)

]
dω = 2π

∥∥H∥∥2
2
.

In accordance with (11):

H =

[
AH BH

CH DH

]
=

 AG 0 BG

CG −ω0I DG

0 ω0I 0

·
Noting that DH = 0, then the H2 norm of the system H is

equal to [14]: ∥∥H∥∥2
2
= tr

(
BT

HΓBH

)
,

where Γ is the unique solution of the Lyapunov equation:

AT
HΓ + ΓAH + CT

HCH = 0.

The explicit notation of these equations gives us:

∥∥H∥∥2
2
= tr

{[
BG

DG

]T
Γ

[
BG

DG

]}
,

[
AG 0
CG −ω0I

]T
Γ + Γ

[
AG 0
CG −ω0I

]
+

[
0 0
0 ω2

0 I

]
= 0,

which coincide with (7 – 8).

Lemma 3: Suppose G =

[
AG BG

CG DG

]
is a square m×m

transfer function matrix. Then

1

2π

+∞∫
−∞

ω2
0

ω2
0 + ω2

ln det

[
ω2

0

ω2
0 + ω2

G∗(iω)G(iω)

]
dω =

= ω0 ln det
[
DG + CG

(
ω0I −AG

)−1
BG

]
−mω0 ln 2. (12)

Proof: Recall that [1]:

ln det
[
H∗(iω)H(iω)

]
= 2 ln det

∣∣H(iω)
∣∣.

In accordance with (9) the left hand side of (12) takes form:

1

2π

+∞∫
−∞

ω2
0

ω2
0 + ω2

ln det

{[
Ω(iω)G(iω)

]∗
Ω(iω)G(iω)

}
dω =

=
1

π

+∞∫
−∞

ω2
0

ω2
0 + ω2

ln det
∣∣H(iω)

∣∣ dω.
Using the fact that transfer matrix H(iω) with the state-

space realization (11) is strictly proper, i.e. H ∈RH∞, we
can apply Poisson integral theorem [15] and get:

1

π

+∞∫
−∞

ω2
0

ω2
0 + ω2

ln det
∣∣H(iω)

∣∣ dω = ω0 ln detH(ω0).

One can check that:

H(ω0) =
1

2

[
DG + CG

(
ω0I −AG

)−1
BG

]
.

Hence,

1

2π

+∞∫
−∞

ω2
0

ω2
0 + ω2

ln det

[
ω2

0

ω2
0 + ω2

G∗(iω)G(iω)

]
dω =

= ω0 ln det
[
DG + CG

(
ω0I −AG

)−1
BG

]
−mω0 ln 2.

This completes the proof.

Theorem 2: Let F be a system with a state-space reali-
zation (1) and let w(t) be a stochastic input disturbance with
bounded σ-entropy. Then the σ-entropy norm (4) is equal to:

∣∣∣∣∣∣F ∣∣∣∣∣∣2
S
=

tr

M

BB
D

TP
BB
D




tr

{
M

[
B
I

]T
Q

[
B
I

]} , (13)

where the scalar q ∈
[
0, ∥F∥−2

∞
)

and matrices P > 0, Q > 0,
R > 0 are the unique solution of the following system of
equations (14) – (19):

ATR+RA+ qCTC + LTM−1L = 0, (14)

M
(
BTR+ qDTC

)
= L, (15)(

I − qDTD
)−1

= M, (16)

− ω0

2
ln det

mM

4 tr

{
M

[
B
I

]T
Q

[
B
I

]} −

− ω0 ln det

{
I + L

[
ω0I −A−BL

]−1

B

}
= s, (17)
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[
A+BL 0

L −ω0I

]T
Q+Q

[
A+BL 0

L −ω0I

]
+

+

[
0 0
0 ω2

0 I

]
= 0, (18)

A+BL 0 0
BL A 0
DL C −ω0I

T

P + P

A+BL 0 0
BL A 0
DL C −ω0I

+

+

 0 0 0
0 0 0
0 0 ω2

0 I

= 0. (19)

Proof: According to theorem 1, the worst case spectral
density of the input is equal to:

S⋆(ω) =
[
I − qF ∗(iω)F (iω)

]−1
.

The condition q ∈
[
0,

∥∥F∥∥−2

∞

)
implies that:

I − qF ∗(iω)F (iω) > 0, ∀ω ∈ R1.

This guarantees the existence of a spectral factor G such
that: [

I − qF ∗(iω)F (iω)
]−1

= G(iω)G∗(iω).

It is easily verified that the last equality is equivalent to:[√
qF ∗(iω) G−∗(iω)

] [ √
qF (iω)

G−1(iω)

]
= I.

Using the notation Υ(iω) =

[ √
qF (iω)

G−1(iω)

]
one can check

that Υ(iω) is an inner function with the state-space realiza-
tion [16]:

Υ =

 A B√
qC 0

−M−1/2L M−1/2

·
Applying lemma 1 to the system Υ we get:

ATR+RA+ qCTC + LTM−1L = 0, (20)

qDTC −M−1L+BTR = 0, (21)

qDTD +M−1 = I. (22)

It follows from (21) and (22) that:

M =
(
I − qDTD

)−1
,

L = M
(
BTR+ qDTC

)
and if we combine this two equations with (20) we obtain the
subsystem (14) – (16).

We now consider the σ-entropy constraint (6). Taking into
account that S⋆(ω) = G(iω)G∗(iω) the integral in the left
hand side of (6) may be transformed into:

+∞∫
−∞

φ(ω) ln det
mφ(ω)G∗(iω)G(iω)

1

2π

+∞∫
−∞

φ(ω′) tr
[
G∗(iω′)G(iω′)

]
dω′

dω =

=

+∞∫
−∞

ω2
0

ω2
0 + ω2

ln det

[
ω2

0

ω2
0 + ω2

G∗(iω)G(iω)

]
dω− (23)

−m

+∞∫
−∞

ω2
0

ω2
0 + ω2

dω ×

× ln

 1

2πm

+∞∫
−∞

ω2
0

ω2
0 + (ω′)2

tr
[
G∗(iω′)G(iω′)

]
dω′

· (24)

Applying lemma 3 to the addend (23), lemma 2 to the
multiplier (24) and noting that:

+∞∫
−∞

ω2
0

ω2
0 + ω2

dω = πω0,

we get [16] the σ-entropy constraint (17) in the state space.
Finally, since the transfer matrix G(iω) is a factorization of

S⋆(ω) = [I − qΛ(iω)]
−1 in the form S⋆(ω) = G(iω)G∗(iω),

then (5) can be rewritten as:

∣∣∣∣∣∣F ∣∣∣∣∣∣2
S
=

+∞∫
−∞

ω2
0

ω2
0 + ω2

tr
{[
F (iω)G(iω)

]∗[
F (iω)G(iω)

]}
dω

+∞∫
−∞

ω2
0

ω2
0 + ω2

tr
[
G∗(iω)G(iω)

]
dω

·

Taking into account that:

FG =

 AG 0 BG

BCG A BDG

DCG C DDG


and applying lemma 2 to the last expression, we obtain [16]:

∣∣∣∣∣∣F ∣∣∣∣∣∣2
S
=

tr


 BG

BDG

DDG

TP
 BG

BDG

DDG




tr

{[
BG

DG

]T
Q

[
BG

DG

]} =

=

tr

M

BB
D

TP
BB
D




tr

{
M

[
B
I

]T
Q

[
B
I

]} ,
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which coincides with (13). According to lemma 2 matrices
Q > 0 and P > 0 are solutions of the equations (18) and (19),
respectively. This completes the proof.

IV. CONCLUSIONS

In this paper we have solved a problem of the σ-entropy
analysis of the continuous time linear time invariant system
in the time domain. It has been shown that σ-entropy norm∣∣∣∣∣∣F ∣∣∣∣∣∣

s
is defined after solving coupled matrix equations: one

algebraic Riccati equation, one nonlinear equation over log
determinant function, and two Lyapunov equations. In future
work we will develop the numerical procedure and numerical
tools for σ-entropy computation of stochastic signal w(t) and
the σ-entropy norm of linear system.
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