
Automatic Generation of Object-Oriented Code

from the ReLEL Requirements Model
Andrianjaka Miary Rapatsalahy,

Hajarisena Razafimahatratra,

Thomas Mahatody

Laboratory for Mathematical and

Computer Applied to the Development

Systems (LIMAD)

University of Fianarantsoa

Fianarantsoa, Madagascar

andrianjaka92@ yahoo.fr,

hajarisena@yahoo.fr,

hasinathomas@hotmail.com

Mihaela Ilie,

Sorin Ilie

Dept. of Computers and Information

Technology

University of Craiova

Craiova, România

ela.pirvu@gmail.com,

sorin.ilie@software.ucv.ro

Raft Nicolas Razafindrakoto

Laboratory of Multidisciplinary Applied

Research (LRAM)

University of Fianarantsoa

Fianarantsoa, Madagascar

rnraft@gmail.com

Abstract—The final executable code should no longer be

considered as a central element in a software development

process but rather a naturally important component that

results from a model transformation. The objective of the

MDA (Model Driven Architecture) approach is to lift the lock

of software development automation from the CIM

(Computation Independent Model) requirements until the code

of an application is obtained. Therefore, we have proposed in

the framework of MDA an approach that consists of

automatically generating object-oriented code from the CIM

model represented by ReLEL (Restructuring extended lexical

elaborate language). ReLEL is a natural language-oriented

model that represents both the client requirements and the

conceptual level of a system. However, the MDA framework

does not recommend the type of UML model that corresponds

to each business activity. Consequently, automating the

software development process from the CIM model specified

by ReLEL becomes a complex task. Our strategy in this paper

includes the instantiation of the ReLEL model in the Praxeme

methodology, which models each of the company's concerns,

grouped in a homogeneous whole, using the UML (Unified

Modeling Language) and which considers the articulation of

these aspects by adopting the MDA principle. To do this, we

propose to automate the articulation that covers the

intentional, semantic, logical, and software aspects of Praxeme.

To validate our approach, we measure the coupling and

cohesion of the UML class diagram obtained from the Java

code generated from this article using the slicing technique.

The results show that the coupling is weak, and the cohesion is

strong. It can be deduced that the method proposed in this

paper can produce a more reliable and efficient system.

Keywords—MDA, ReLEL, eLEL, Praxeme methodology,

UML language, Atlas Transformation Language (ATL), Acceleo,

slicing technique, coupling, cohesion

I. INTRODUCTION

The evolution of requirements forces the enterprise
information system to remain flexible in these changes. The
enterprise therefore needs a methodological framework to
control its architecture and govern its transformation [12]. In
fact, Praxeme is a way to provide enterprises with tools
capable of absorbing change by driving the design of the
information system towards a service-oriented approach [6].
As a result, it focuses on the process and technology of
deriving the logical model of the future information system
from a set of higher-level models derived from the business
line itself [13]. The logical model specifies the logical aspect
of Praxeme. Thus, it plays a very important role, i.e. an

intermediary between various aspects at the level of the
business architecture and the technical architecture [22]. This
approach allows modelers to build information systems
independent of the business and any technical
implementation, but also to facilitate structural decisions of
the software system [5]. However, automatic localization of
logical services in logical modeling is a perilous task [19].
This is due to the dispersion of information at the level of the
intentional aspect of Praxeme, which has no dedicated UML
diagram to represent the intentions of the enterprise [12, 19,
22]. So, (Razafindramintsa et al., 2016) [17] recommended
an approach to represent the intentional aspect of Praxeme
with the natural language-oriented requirements model noted
eLEL (elaborate Lexicon Extended Language) [14]. As the
Praxeme methodology makes use of the MDA approach for
automating the UML models representing each aspect of the
business, therefore, the automatic localization of the logical
service (logical aspect) from eLEL (intentional aspect)
becomes obvious [22]. However, in [22], (Rapatsalahy et al.,
2020) argue that business logic services automatically
localized from eLEL cannot be used in the code (software
aspect) framework of object-oriented applications. Since
eLEL describes the information that constitutes the logical
service of the logical aspect of Praxeme, the problem lies in
the intentional aspect of eLEL. Indeed, the attribute types
and system method representations of eLEL do not conform
to object-oriented conventions [21]. In this paper, our
approach consists in using the ReLEL requirements model,
which is an extension of eLEL, to specify the intentional
aspect of Praxeme and automate the software development
process in the MDA framework. To do this, we have
proposed transformation rules by applying the model-to-
model (M2M) and model-to-text (M2T) transformation
techniques. The derivation of the intentional aspect (CIM)
into the semantic aspect (Plateform Independent Model or
PIM) and then of the semantic aspect into the logical aspect
(PIM) is a transformation classified in M2M. Then the
translation of the logical aspect into object-oriented code is
the classification transformation into M2T. The
implementation of the derivation rules in this paper uses the
ATL language for M2M and the Acceleo template engine for
M2T. Given the choice of technology, the results obtained in
the software aspect are packages, classes as well as Java
class methods.

II. RELATED WORK

The automated transformation from design to code brings
many benefits, such as increased productivity, better

 36

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 1, NO. 1, JUNE 2021, pp. 36-47

Cite as: A. M. Rapatsalahy, H. Razafimahatratra, T. Mahatody, M. Ilie, S. Ilie, and R. N. Razafindrakoto, “Automatic Generation of Object-Oriented Code

from the ReLEL Requirements Model”, Syst. Theor. Control Comput. J., vol. 1, no. 1, pp. 36–47, Jun. 2021.
DOI: 10.52846/stccj.2021.1.1.9

mailto:sorin.ilie@software.ucv.ro

portability, reduced delivery time and the elimination of
manual programming errors [10]. Praxeme brings a major
advantage to the software development process by adopting
the MDA approach in its methodology. This means that each
aspect of the business advocated by Praxeme is represented
by an appropriate UML model, which can then be
automatically derived in another aspect. The objective in this
paper is to automatically generate a code skeleton that
represents the Praxeme software aspect from the intentional
aspect specified by the ReLEL requirements model. This
approach is solved by the M2M transformation technique as
well as the M2T transformation. Consequently, in this
section, we will summarize the research literature based on
the use of the requirements model in the Praxeme
methodology.

In [12], (Biard et al, 2013) introduces an approach that
consists in using the Praxeme methodology for business
transformation. The researchers start from a pragmatic
aspect so that the business objects and their data that make
up the semantic aspect of Praxeme can be extracted from the
messages exchanged between the different participants.
Then, to establish the business and organizational rules in the
semantic and pragmatic aspect, they recommend the use of
SBVR (Semantics Business Vocabulary Rules) [8] to
represent the intentional aspect of Praxeme.

In [17], (Razafindramintsa et al., 2016) present an
approach which consists of representing the intentional
aspect of Praxeme with the eLEL lexicon, which is a
terminological database facilitating the derivation of other
aspects of the methodology, such as semantics. To do so,
they proposed rules to derive the eLEL natural language-
oriented requirements model into a preliminary version of
the UML class diagram and the transition state machine
which are the components of the semantic aspect of the
Praxeme methodology [12]. Since Praxeme absorbs the
MDA approach for the articulation of its aspect, the
implementation of the derivation rules noted M2M proposed
in this paper uses the ATL language.

In [18] (Razafindramintsa et al., 2017) present an
approach that deals with the automatic derivation of the
pragmatic aspect of Praxeme from the intentional aspect

specified by the natural language-oriented requirements
model eLEL. Their strategy consists in proposing rules to
derive eLEL from the UML diagrams, namely the use case
and the activity. Indeed, these two diagrams represent the
pragmatic aspect of the Praxeme methodology [18]. As an
initial result, they obtained a use case and activity diagram in
an XMI (XML Metadata Interchange) format [4]. Then, in
[18], (Razafindramintsa et al, 2017) transformed the previous
results into a concrete UML diagram. The final result of the
derivation process are UML use case and activity diagrams
in XMI in a concrete format.

In [19], (Razafindramintsa et al., 2017) present an
approach that deals with the automation of the logical service
localization process at the time of logical modeling. This
approach instantiates the eLEL requirements model in the
Praxeme methodology in order to specify the business intent
aspect. Then, the main contribution in this paper is the
proposal of rules to derive the semantic [17] and pragmatic
[18] aspect recently obtained in logical factory, data structure
and logical workshop of the Praxeme logical aspect. They
used the M2M transformation approach and the ATL
language for the implementation of the rules. The results of
the derivation are concrete and abstract models (XMI format)
such as the logic factory, data structure and logic workshop.

In [22], (Rapatsalahy et al, 2020) present a strategy that
focuses on the automatic generation of software components
of the Praxeme methodology from the intentional aspect
specified by ReLEL. To do so, they proposed rules allowing
the automatic translation of software components obtained
from ReLEL into software components of the Praxeme
methodology according to the M2T approach. For the
implementation of the translation rules, they made use of the
Acceleo template engine [22].

III. BACKGROUND

This section presents the two main concepts developed in
this article. The first describes an overview of the basic
concept of the Praxeme methodology. Then the second
presents the ReLEL lexicon, a model which allows the
representation of the enterprise's intention in the intentional
aspect of Praxeme.

Fig. 1. Enterprise System Topology [22]

 37

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 1, NO. 1, JUNE 2021, pp. 36-47

A. Praxeme Methodology

Praxeme is an enterprise methodology that allows the
complexity of a system to be mastered through the principle
of separating the responsibilities of the enterprise into a
homogeneous whole named "aspect" [22]. To do this, this
methodology proposes a framework called the Enterprise
System Topology (TSE) that defines several aspects and
each of them is represented by a particular model [19]. This
article deals with the intentional, semantic, logical, technical
and software aspects of the Praxeme methodology. It uses
the MDA approach concerning model transformation and
service architecture (SOA) to build a system. Fig. 1
represents the Praxeme Enterprise System Topology.

The intentional aspect of Praxeme gathers the terms used
exclusively in the enterprise and/or in its field of activity
accompanied by their precise definitions [12, 19].
Consequently, in [12], (Biard et al., 2013) support the
usefulness of language close to natural language to express
the company's intentions so that it is understood by all
stakeholders. This is the reason why several research works
have focused on the instantiation of the natural language-
oriented requirements model in the Praxeme methodology
(see Related work section).

The semantic aspect captures the knowledge of the
business such as the objects, data and business rules that are
the basis of the enterprise. These are the most stable and
durable elements, and they are independent of the

organization deployed. The semantic business model is
developed in terms of packages, modeled through UML class
and transition state diagrams. It is obtained by deriving the
intentional aspect [17].

Praxeme prioritizes logical modeling through the logical
aspect, which is the most important because it ensures the
decoupling between the solution designed and the
technologies used for its implementation. It uses basic units
called logical services to build systems. Indeed, they are the
finest components in the service architecture and are used for
an elementary response given by the system in relation to an
information, action or transformation need [5]. All the
information that makes up the logical services should be
described in the model that specifies the intentional aspect of
Praxeme. Consequently, the logical aspect is obtained from
the articulation of the intentional, semantic, and pragmatic
aspects [19].

The technical aspect concerns the choice of the
technology that should implement the logical aspect (e.g.,
how to code the services in the logical aspect of Praxeme)
[22].

The software aspect covers all software components that
automate the part of an action of a system [5]. It is composed
of all things found in a software (code, sources, binaries)
based on a structured data model [22].

Fig. 2. Simplified ReLEL metamodel [21]

 38

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 1, NO. 1, JUNE 2021, pp. 36-47

B. Restructuring extended Lexical Elaborate Language

ReLEL is a natural language lexicon that captures
meaningful terms in the UofD (universe of discourse) and
stores it from a symbol. The UofD includes all information
sources and people related to software [1]. Indeed, the
ReLEL symbol is a simple coding system that includes four
entities such as notion, behavioral response, attribute, and
method. The notion relates the denotation of the symbol, that
is, the intrinsic and substantial characteristics of the symbol,
while the behavioral responses represent the relationship
between the described symbol and other symbols or
"connotation" [23]. The attribute and method represent the
conceptual level of a symbol and its characteristics
necessarily depend on the symbol typology. Each ReLEL
symbol belongs to one of the following categories, namely
subject, object, verb and state. The symbols classified as
subject, verb and object are the elements integrating the
requirements [9]. The three objectives of ReLEL are the
unification of the language for communication with

stakeholders, the specification of requirements, and the
accurate representation of the conceptual information
corresponding to each term in the UofD. Fig. 2 represents the
extract of the ReLEL metamodel used in this article.

IV. PROPOSED METHODOLOGY

The approach proposed in this paper classifies the model
transformation into two parts. The first one adopts the M2M
transformation technique that links the intentional aspect to
the semantic aspect and then the semantic aspect to the
logical aspect. The model that represents the intentional
aspect of the Praxeme methodology captures the customer
requirements. Consequently, it is classified as a CIM
(Computation Idependant Model) in the MDA approach. The
models that specify the semantic as well as the logical aspect
are PIMs (Platform Independent Models) since they describe
the details of the system without showing the specific
characteristics of a particular execution platform or
technology. Hence, the basic principle of this M2M

Fig. 3. Overview of the proposed M2M approach

approach is to generate the target model namely the semantic
(PIM) and logical (PIM) from the source model such as the
intent (CIM) as well as the semantic model (Fig. 3). In the
transformation, the intentional aspect is represented by the
ReLEL requirements model and conforms with its
metamodel (Fig. 2). Then the semantic aspect is specified by
the class diagram and the UML transition state machine.

Finally, the logical aspect is specified by the logical model
which conforms to its metamodel (Fig. 4). The second
approach adopts the M2T transformation technique which
consists in translating the logical model obtained from the
intentional aspect represented by the ReLEL model into an
object-oriented code. Fig. 3 illustrates the synopsis of the
M2M approach proposed in this paper.

A. Derivation process from the intentional aspect to the

semantic aspect of Praxeme

The first part of the derivation process consists of
transforming the ReLEL requirements model of the

intentional aspect into the UML class diagram of the
semantic aspect of the Praxeme methodology. The
transformation is based on ten rules described in human
language. Table I illustrates the mapping relationship
between elements of the ReLEL model and the UML class

 39

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 1, NO. 1, JUNE 2021, pp. 36-47

model. The mapping rules between the ReLEL model and
the UML class diagram in Table I only concern the ReLEL
symbols of type subject and object. The mapping rules link

from the ReLEL model elements (left) to the UML class
model elements (right).

TABLE I. RELATIONSHIP BETWEEN ELEMENTS OF THE RELEL MODEL AND THE UML CLASS MODEL

Description of ReLEL Model Elements of the ReLEL model UML class model elements

A domain is a necessary concept for storing ReLEL classified as
subject and object

ReLEL Domain UML package

A ReLEL of subject type corresponds to an actor in the UofD. A

ReLEL classified as object represents a significant and passive

entity in the UofD.

ReLEL Symbol UML class

The attributes provide the characteristics of the ReLEL symbol. ReLEL Atrribute UML class attribute

The method is an action to access a ReLEL object. ReLEL Method UML class operation

A parameter is nothing else than an already existing attribute

which is manipulated by the method of a ReLEL object.
ReLEL Parameter Method UML operation parameter

The return value is a response returned by the method after the

manipulation of the ReLEL object.
Return value of a ReLEL method Return value of a UML class

operation

The type of a ReLEL attribute can be either a ReLEL symbol

(subject/object) or a simple type (complete, string of characters,

etc...).

Type of a ReLEL attribute Type of a UML class attribute

The type of the return value of a method of a ReLEL object can

be either a ReLEL symbol (subject/object) or a simple type
(complete, string of characters, etc...).

Type of the return value of a method of a

ReLEL object

Type of the return value of an

operation of a UML class

The concept of circularity links two ReLEL source and target
objects.

Circularity between two ReLEL objects Association between two

different UML classes

The concept of number of elements created defines the minimum

and maximum occurrence of an association between two ReLEL

symbols.

Number of ReLEL items created UML cardinality

The second part of the derivation process is the
transformation of the ReLEL requirements model of the
intentional aspect into a UML transition state diagram of the
semantic aspect of the Praxeme methodology. The UML

transition state diagram is composed of state, transition and
event that triggers the transition. Table II illustrates the
mapping relationship between elements of the ReLEL model
and the UML transition state model.

TABLE II. MAPPING RELATIONSHIP BETWEEN ELEMENTS OF THE RELEL MODEL AND THE UML TRANSITION STATE MODEL

Description of the ReLEL model elements Elements of the ReLEL model
Elements of the UML

transition state model

The state classified ReLEL symbol is characterized by attributes

that contain values at different times during system execution.

ReLEL classified state UML transition state diagram

The concept of circularity allows to link two ReLEL objects

target, and source classified as a state.
ReLEL classified state related by the concept

of circularity
Transition of an event in the

UML transition state diagram

A state classified ReLEL object is triggered by the event of
another state ReLEL object.

Method of a ReLEL of type state UML transition state diagram

event

B. Process for deriving the semantic aspect into the logical

aspect of Praxeme

The logical aspect of the Praxeme methodology is a
means of opening the system because it leads to the
production of software components published as a service in
the logical continuation of the web service technology. In
this article, we base ourselves more on the logical service
called BLS (Business Logic Service). It is described in the
logical aspect of Praxeme from the semantic modeling of the
methodology. The BLS is obtained from the derivation of the
operation belonging to the semantic class. It is in the
Business Logic Machine or BLM of the Praxeme logic
model which also derives from a semantic class. The BLM is
encapsulated in the logical workbench or LW which does not
correspond to any element in the upstream model but results
from the structuring decision taken by the logical architect

during the logical design. Thus, the access to the BLS is
either directly between BLM located in the same LW or
through the service interface provided by the LW. The
relationship between the BLM is only reflected in the usage
relationship which is a functional dependency obtained at the
time of execution of the BLS service call. Finally, the
aggregate of the LW is stored in the logical factory or LF.
Fig. 4 represents the logical factory metamodel used in this
paper.

 Table III illustrates the mapping relationship between
elements of the semantic model and the logical model of the
Praxeme methodology. The components of the Praxeme
logical model resulting from the approach proposed in this
article are the logical factory, the logical workshop, the
logical business machine, the logical business service, and
the interface services.

 40

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 1, NO. 1, JUNE 2021, pp. 36-47

Fig. 4. Overview of the proposed M2M approach

TABLE III. MAPPING RELATIONSHIP BETWEEN ELEMENTS OF THE UML CLASS MODEL AND THE LOGICAL MODEL

Elements of the UML class model (semantic aspect) Elements of the logic model (logical aspect)

UML package Logic factory or LF

UML Class Business Logic Machine (BLM)

UML class operation Business Logic Service (BLS)

UML class operation parameter BLS parameter

Return value of a UML class operation BLS return value

Primitive type of a parameter or a return value of a UML class operation Type primitive of a parameter or return value of a BLS

Class type of a parameter or a return value of a UML class operation BLM type of a parameter or return value of a BLS

 41

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 1, NO. 1, JUNE 2021, pp. 36-47

C. Derivation process from the logical aspect to the

Praxeme software aspect

The derivation of the logical component obtained from
ReLEL into software components of the Praxeme software
aspect is the last process proposed in this article. Indeed, the
technical implementation of the logical components obtained
from ReLEL into software components must take into
account the technical aspect of the Praxeme methodology [5,
22] Thus, the rules for mapping the logic model into the code
skeleton presented in Table IV take into account the Java
technology. Fig. 5 illustrates the synopsis of the translation

of the logic model into a code skeleton of the Praxeme
software aspect that implements the M2T approach in MDA.
We used the translational approach that directly translates the
PIM classified logic model into object-oriented code [15].
Therefore, for the translation, the Acceleo template engine is
used. The principle is that the logical model obtained in the
logical aspect of Praxeme is added in the execution chain as
a source model. Afterwards, the data that makes up the
logical model is extracted into a module (file '.mtl') [16]. The
mapping rules for translating logical components into
software components proposed in this paper are applicable
for other object-oriented technological choices [22].

Fig. 5. Overview of the proposed M2T approach

TABLE IV. MAPPING RELATIONSHIP BETWEEN ELEMENTS OF THE PRAXEME LOGIC MODEL AND JAVA CODE

Elements of the logic model (logical aspect) Java elements (software aspect)

Logic factory or LF Java package

Business Logic Machine (BLM) Java class

Business Logic Service (BLS) Java class method

BLS parameter

(prefixed by “SET” [21]
Java class instance variable

Type (BLM or primitive) of a BLS parameter (prefixed by "SET") Type (class or primitive) of an instance variable of a Java class

Return value of a BLS Return value of a method of a Java class

Type (BLM or primitive) of the return value of a BLS Type (class or primitive) of the return value of a Java class method

Parameter of a BLS Parameter of a method of a Java class

Type (BLM or primitive) of a BLS parameter Type (class or primitive) of a parameter of a method of a Java class

V. VALIDATION OF THE STRATEGY

To validate the strategy, we introduced the proposed
approach on the travel booking process of the agency
'Transpost Malagasy' connecting two major cities in
Madagascar [21]. Only an extract of information from the

main source, namely the UofD, is presented in this section:
"for a reservation, the luggage can be a part of the
passenger's equipment" [22]. Fig. 6 shows an extract of the
information from the ReLEL symbol classified object
"Reservation" in XMI format.

 42

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 1, NO. 1, JUNE 2021, pp. 36-47

<? xml version="1.0" encoding="UTF-8"?>
<MMReLEL:DiagramRoot xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:MMReLEL="http://MMReLEL/1.0" xsi:schemaLocation="http://MMReLEL/1.0../ Metamodele/MM_ReLEL.ecore" nameOfRoot="Trip

reservation">
<ownedDomaine nameOfDomain="term classified object">

<ownedSymbol name="Reservation" Classification="Object">

 <OwnedBehavioral Description="The action applied to it is the validation of the reservation"/>
 <OwnedBehavioral Description="The action applied to it is the listing of reservations "/>

 <OwnedBehavioral Description="The action applied to it is the verification of the payment deadline"/>

 <OwnedBehavioral Description="The action applied to it is the initialization of the status (paid not or paid)"/>
 <OwnedNotion Description="This is an object that allows the customer to book a land trip"/>

 <OwnedNotion Description="A reservation contains one or more places"/>

 <OwnedNotion Description="A reservation has a customer reference"/>
 <OwnedNotion Description="A reservation has a travel reference in order to know the destination, the chosen departure date, the place of departure"/>

 <OwnedNotion Description="The reservation contains the deadline of the date of payment"/>

 <OwnedNotion Description="A reservation is made up of passengers"/>
 <OwnedNotion Description="A reservation has a status"/>

 <OwnedMethod Name="getPassenger" OwnerSymbol="Reservation">

 <OwnedRetValue name="passenger" OwnerSymbol="Reservation">
 <TypeOfReturnValue xsi:type="MMReLEL:Type_Symbol" nameOfType="Type_Symbol" OwnerSymbol="Reservation"

 OwnerType="Method" nameOfType_symbol="Passenger" ReferSymbol="//@ownedDomaine.0/@ownedSymbol.2"/>

 </OwnedRetValue>

 </OwnedMethod>

 <OwnedMethod Name="setPassenger" OwnerSymbol="Reservation">

 <OwnedParameter Code="passenger" Definition="this is a person who takes a seat in a car for a trip."
 OwnerSymbol="Reservation" Size="3" name="passenger">

 <OwnedType xsi:type="MMReLEL:Type_Symbol" nameOfType="Type_Symbol" OwnerSymbol="Reservation"

 OwnerType="Method" nameOfType_symbol="Passenger" ReferSymbol="//@ownedRootSymbol.7"/>
 </OwnedParameter>

 </OwnedMethod>

 <OwnedAttribute Code="passenger" Definition=" this is a person who takes a seat in a car for a trip."
 OwnerSymbol="Reservation" Size="3">

 <OwnedType xsi:type="MMReLEL:Type_Symbol" nameOfType="Type_Symbol" OwnerSymbol="Reservation"

 nameOfType_symbol="Passenger" ReferSymbol="//@ownedDomaine.0/@ownedSymbol.2"/>
 </OwnedAttribute>

 </ownedSymbol>

</ownedDomaine>

</MMReLEL:DiagramRoot>

Fig. 6. Extract of information from the ReLEL symbol object "reservation"

Then we applied the derivation rules (intentional,
semantic, logical) and the ATL transformation described in
this paper (Tables I, II, III) on this case study. Thus, we
automatically obtained as a result of the derivation and
transformation the logical model represented by Fig. 6 (only
the extract of the logical model is presented in this paper).
Fig. 7 illustrates the logical components of the logical aspect
of Praxeme, namely the logical factory prefixed by the letter

'LF' which stores a logical workshop called 'LW_reservation'
in which a logical business machine called
'BLM_Reservation' is encapsulated as well as its service
interface [22] Indeed, 'BLM_Reservation' stores all the
services related to this business logic machine. It can thus be
directly accessed by another logical business machine which
is in the same logical workshop 'LW_Reservation' or from its
service interface called 'ServiceInterfaceReservation'.

Fig. 7. Praxeme logical component

 43

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 1, NO. 1, JUNE 2021, pp. 36-47

Afterwards, we applied the rules for translating the
logical component into a Praxeme software component
(Table IV) to this case study, using Acceleo as the template.

Finally, we obtained as a result Java software component
such as package, class, interface and class method. Fig. 8
shows the generated Java component.

Fig. 8. Generated Java component

A better quality of the source code favors the updating of
the program, i.e. its evolution [20].A modular system is easy
to maintain because of its components with high cohesion
and low coupling [20, 22]. For that reason, in this paper we
measured the coupling and cohesion of the UML class
diagram generated from the Java classes 'Reservation.java'
and 'passenger.java' using the slicing technique [2, 11, 22].
Class slicing is defined as a decomposition technique that

removes class components that are not relevant for
computation from the slicing criterion [11].

A. Identify the Headings Computing class coupling based

on dependency graph slices

Coupling measures the information flow between two
classes [11]. The computation is based on the dependency of
attributes and its methods [22]. Fig. 9 represents the class

 44

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 1, NO. 1, JUNE 2021, pp. 36-47

dependency graph or "CDG" based on the reservation
information section.

Table V illustrates the result of the computation of the
coupling between reservation and passenger and vice versa.

Fig. 9. CDG based on a reservation information slice

TABLE V. COUPLING BETWEEN RESERVATION CLASS AND PASSENGER AND VICE VERSA

 Coupling (Reservation, passager) Coupling (Passager, reservation)

Total 0.125 0

B. Calculation of the class cohesion based on the

dependency graph slice

Cohesion is an important factor in software design,
indicating that the system has been well partitioned into
components with strong internal relationships between

attributes, method, and class [11]. The slice for the
reservation class is defined as follows: Slicing Criterion
(Reservation, id_Reservation).

Table VI shows the result of the cohesion calculation of
the reservation class.

Fig. 10. CDG reservation class based on a slice

 45

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 1, NO. 1, JUNE 2021, pp. 36-47

TABLE VI. COHESION OF THE RESERVATION CLASS

Nc Dep_ D(n) DRC(C)

Id-reservation 0.928

Ref_customer 0.928

Ref_trip 0.714

Place 0.642

Date_delay 0.785

Passenger 0.785

Status 0.785

Set Id_reservation 0.928

Set Ref_customer 0.928

Set Ref_trip 0.714

Set Place 0.642

Set Date_delay 0.785

Set Passenger 0.785

Set Status 0.785

DRC(C) = 1/Nc Σ Dep_ D(n) 0.8

The slice for the Passenger class is defined by the
following slicing criterion: Slicing Criterion (Passenger,

Id_passenger). Table VII shows the result of the calculation
of the cohesion of the Passenger class.

TABLE VII. COHESION OF THE PASSENGER CLASS

Nc Dep_ D(n) DRC(C)

Id_passenger 0.875

Name 0.875

First Name 0.875

Ref_luggage 0.875

Set id_pass 0.875

Passenger 0.875

Set Name 0.875

Set First Name 0.875

Set Ref_luggage 0.875

DRC(C) = 1/Nc Σ Dep_ D(n) 0.875

C. Performance analysis

The coupling and cohesion result "R" represents the
correlation coefficient and the coefficient of the linear model
[7, 11, 22]. "R" can be between 0.8 and 1.0 (indicating a
strong association), or 0.5 and 0.8 is a medium association (if
not weak or even non-existent). Accordingly the result of the
coupling between the reservation and passenger class which
is equal to 0.125 indicates a weak association. Then the
result for the CDG of the reservation class R equal to 0.8 and
the passenger equal to 0.875 indicates a strong cohesion.
Obviously, these results allow us to deduce that the source
code obtained from the method proposed in this article is
easy to maintain, reusable and reliable, which allows us to
obtain a more reliable and efficient software system.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed to automatically generate
object-oriented code representing the software aspect of the
Praxeme methodology from the intentional aspect specified
by the ReLEL model [21]. To do so, we have proposed rules
allowing the articulation of the following aspects of
Praxeme: intentional, semantic, logical, technical and
software. The process of transformation conforms to the
MDA approach and is done in two steps, namely the model
to model (M2M) which links the intentional, semantic, and
logical aspects as well as the model to text (M2T) which
links the logical aspect to the software aspect. As a final
result of the transformation process, we have obtained Java
software components namely packages, classes and class
methods. Therefore, we can conclude that we have lifted the
lock of software development automation from the ReLEL

 46

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 1, NO. 1, JUNE 2021, pp. 36-47

requirements model to the code of an application. Then, to
validate our strategy, we analyzed the performance of the
method proposed in this paper by measuring the coupling
and cohesion of the UML class diagram obtained from the
source code generated in this approach using the slicing
technique [3, 11]. The results show that the coupling is weak,
and the cohesion is strong, and it can be inferred that our
method can produce a maintainable system. As a work
perspective, we propose an automatic implementation of the
Java code skeleton obtained in this approach from a UML
state machine diagram.

REFERENCES

[1] J.C.S.P. Leite, G.D.S. Hadad, J.H. Doorn and G.N. Kaplan, “A
scenario construction process”, Requirements Eng. Journals, vol. 5,
no. 1, pp. 38-61, July, 2000.

[2] Y. Zhou, L. Wen, J. Wang, Y. Chen, H. Lu and B.X. DRC, “A
dependence relationships based cohesion measure for classes”, In
Proc. Of the 10th Asia-Pacific Software Engineering Conference
Software Engineering Conference (ASPEC), Washington, DC, USA,
2003.

[3] Y.G. Gueheneuc, “ A reverse engineering tool for precise class
diagrams”, Proc. Conf. Centre for Advanced Studies on Collaborative
Research, pp. 28-41, 2004.

[4] X. Blanc, “MDA en action: Ingénierie logicielle guide par les
modèles”, Eyrolles, 2005.

[5] D. Vauquier, “Modus la méthodologie PRAXEME, Guide general”,
2006.

[6] D. Vauquier, “Modus la méthodologie PRAXEME, Guide de l’aspect
logique”, 2007.

[7] T.M. Meyers and D. Binkley, “An Empirical Study of Slice based
Cohesion and Coupling Metrics”, ACM TOSEM, 17/1, 2007.

[8] OMG, "Semantics of Business Vocabulary and Business Rules",
2008.

[9] N. Niu and S. Easterbrook, “Extracting and modeling product line
functional requirements”, in 16th IEEE International Requirements
Engineering Conference, pp. 155-164, 2008.

[10] M. Nassar, A. Anwar, S. Ebersold, B. Asri, B. Coulette, Kriouile, “A
Code Generation in VUML profile: a Model Driven Approach”, in
7th International Conference on Computer Systems and Applications,
Rabat, Morroco, May 10-13, pp. 412-419, 2009.

[11] A. Kumar and S.K. Khalsa, “Determine cohesion and coupling for
class diagram through slicing techniques”, IJACE, vol. 4, no. 1, pp.
19-24, 2012.

[12] T. Biard, M. Brigant and J.P. Bourey, “Explicitation et structuration
des connaissances pour la transformation de l’entreprise : Les apports
de la méthodologie Praxeme”, CIGI, 2013.

[13] S. Lamyae, T.Abdennebi,“Overall design approach for urbanized
information systems: Application of the method Praxeme”, in 2014
Third IEEE International Colloquium in Information Science and
Technology (CIST), IEEE, Tetouan, Morocco, pp. 18-23, 2014.

[14] J.L. Razafindramintsa, T. Mahatody and J.P. Razafimandimby,
“Elaborated Lexicon Extended Language with a lot of conceptual
information”, International Journal of Computer Science Engineering
and Applications (IJCSEA), vol. 5, no. 6, Dec, 2015.

[15] H. Benouda, M. Azizi, R. Esbai and M. Moussaoui, “Modeling and
code generation of Android applications using acceleo”, International
Journal of Software Engineering and Its Applications, vol. 10, no. 3,
pp. 83-94, 2015.

[16] I. B. Kara, “Design and Implementation of the ModelicaML Code
Generator Using Acceleo 3.X.”, 2015.

[17] J.L. Razafindramintsa, T. Mahatody and J.P. Razafimandimby,
“Deriving Semantic Aspect of the Praxeme Methodology from
Elaborate Lexicon Language”, in Proc. 20th Int. Conf. Syst. Theory
Control and Computing (ICSTCC), Sinaia, Romania, Oct. 13-15, pp.
842-847, 2016.

[18] J.L. Razafindramintsa, T. Mahatody and J.P. Razafimandimby,
“Pragmatic aspect automatic derivation of the Praxeme methodology
from an elaborated Natural Language”, in Proc. 1st RAAI, Bucharest,
Romania, June. 19-20, 2017.

[19] J.L. Razafindramintsa, T. Mahatody, S.M. Simionescu and J.P.
Razafimandimby, “Logical services automatic location from eLEL”,
in Proc. 21st Int. Conf. Syst. Theory Control and Computing
(ICSTCC), Sinaia, Romania, pp. 849-854, 2017.

[20] H. Razafimahatratra, T. Mahatody, J.P. Razafimandimby and S.M.
Simionescu, “Automatic detection of coupling type in the UML
sequence diagram”, 21st International Conference on System Theory,
Control and Computing, Sinaia, Romania, pp. 635-640, 2017.

[21] M.A Rapatsalahy, J.L Razafindramintsa, T. Mahatody, S. Ilie and
R.N. Razafindrakoto, “Restructuring extended Lexical elaborate
Language”, in 23rd Int. Conf. Syst. Theory Control and Computing
(ICSTCC), Sinaia, Romania, pp. 266-272, 2019.

[22] M.A. Rapatsalahy, H. Razafimahatratra, T.Mahatody, M. Ilie, S. Ilie,
and R.N. Razafindrakoto, “Automatic generation of software
components of the Praxeme methodology from ReLEL”, in 24th
International Conference on System Theory, Control and Computing
(ICSTCC), pp. 843-849, 2020.

[23] M. Urbieta, L. Antonelli, G. Rossi, and J.C.S. do Prado Leite, “The
impact of using a domain language for an agile requirements
management”, Information and Software Technology, 2020.

.

 47

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 1, NO. 1, JUNE 2021, pp. 36-47

