Transfer function approaches for SEEG brain electrode interface applied to tissue classification

Authors

  • Mariana Mulinari Pinheiro Machado Univ. Grenoble Alpes, CNRS, Grenoble INP GIPSA-lab
  • Alina Voda Univ. Grenoble Alpes, CNRS, Grenoble INP GIPSA-lab
  • Gildas Besançon Univ. Grenoble Alpes, CNRS, Grenoble INP GIPSA-lab
  • Guillaume Becq Univ. Grenoble Alpes, CNRS, Grenoble INP GIPSA-lab
  • Philippe Kahane Univ. Grenoble Alpes, CHU Grenoble Alpes Grenoble Institut des Neurosciences, GIN
  • Olivier David Aix Marseille Univ., Inserm, INS Institut de Neurosciences des Syst`emes

DOI:

https://doi.org/10.52846/stccj.2023.3.1.46

Keywords:

SEEG, dynamical modelling, system identification, classification, clinical data

Abstract

This paper is about transfer function approaches for brain-electrode interface modelling in the context of StereoElectroEncephaloGraphy, and their possible use in tissue classification (between grey and white matter). Monopolar and bipolar configurations are first reviewed, giving rise to possible nonparametric and parametric identification methods, as well as related possible classification results (for identical tissues and distinct tissues at measurement points, respectively). A method combining both approaches is then proposed, so as to end up with a classification at each measurement point in any case. The proposed methodology is implemented with clinical data collected from a set of epileptic patients, confirming its interest by providing more than 70% of accuracy in the obtained results.

References

G. Besanc¸on, G. Becq, and A. Voda. Fractional-order modeling and identification for a phantom eeg system. IEEE Transactions on Control Systems Technology, 28(1):130–138, 2020.

G. Besancon, A. Voda, G. Becq, and M. Machado. Order and parameter identification for a non-integer-order model of an eeg system. IFACPapersOnLine (SISYD 2018), 51(15):772–777, 2018.

M. Brodie, S. Shorvon, R. Canger, P. Halasz, S. Johannessen, P. Thompson, H. Wieser, and P. Wolf. Commission on european affairs: appropriate standards of epilepsy care across europe. Epilepsia, 38(11):1245–1250, 1997.

A. Carvallo, J. Modolo, P. Benquet, S. Lagarde, F. Bartolomei, and F. Wendling. Biophysical modeling for brain tissue conductivity estimation using seeg electrodes. IEEE Transactions on Biomedical Engineering, 66(6):1695–1704, 2018.

O. David, A. Job, L. De Palma, D. Hoffmann, L. Minotti, and P. Kahane. Probabilistic functional tractography of the human cortex. Neuroimage, 80:307–317, 2013.

R. De Levie. The influence of surface roughness of solid electrodes on electrochemical measurements. Electrochimica Acta, 10(2):113–130, 1965.

P. Deman, M. Bhattacharjee, F. Tadel, A. Job, D. Rivi`ere, Y. Cointepas, P. Kahane, and O. David. Intranat electrodes: a free database and visualization software for intracranial electroencephalographic data processed for case and group studies. Frontiers in neuroinformatics, 12:40, 2018.

A. Djouambi, A. Voda, and A. Charef. Recursive prediction error identification of fractional order models. Communications in Nonlinear Science and Numerical Simulation, 17(6):2517–2524, 2012.

L. Dora, S. Agrawal, R. Panda, and A. Abraham. State-of-the-art methods for brain tissue segmentation: A review. IEEE reviews in biomedical engineering, 10:235–249, 2017.

R. Fisher, W. Boas, W. Blume, C. Elger, P. Genton, P. Lee, and J. Engel Jr. Epileptic seizures and epilepsy: definitions proposed by the international league against epilepsy (ilae) and the international bureau for epilepsy (ibe). Epilepsia, 46(4):470–472, 2005.

P. Greene, A. Li, J. Gonz´alez-Mart´ınez, and S. Sarma. Classification of stereo-eeg contacts in white matter vs. gray matter using recorded activity. Frontiers in neurology, page 1806, 2021.

W. Grill and J. Thomas Mortimer. Electrical properties of implant encapsulation tissue. Annals of biomedical engineering, 22(1):23–33, 1994.

C. Ionescu, A. Lopes, D. Copot, J.A.T. Machado, and J.H.T. Bates. The role of fractional calculus in modeling biological phenomena: A review. Commun Nonlinear Sci Numer Simulat, 51:141–159, 2017.

S. Lempka, M. Johnson, M. Moffitt, K. Otto, D. Kipke, and C. McIntyre. Theoretical analysis of intracortical microelectrode recordings. Journal of neural engineering, 8(4):045006, 2011.

S. Lempka, S. Miocinovic, M. Johnson, J. Vitek, and C. McIntyre. In vivo impedance spectroscopy of deep brain stimulation electrodes. Journal of neural engineering, 6(4):046001, 2009.

S. Liang, R. Wu, and L. Chen. Laplace transform of fractional order differential equations. Electron. J. Differ. Equ, 139:2015, 2015.

L. Ljung. System Identification: Theory for the User. Pearson Education, 1998.

M. Machado, A. Voda, G. Besanc¸on, G. Becq, P. Kahane, and O. David. Brain tissue classification from stereoelectroencephalographic recordings. Journal of Neuroscience Methods, 365:109375, 2022.

M. M. P. Machado, A. Voda, G. Besanc¸on, G. Becq, O. David, and P. Kahane. Dynamic modelling of the brain-electrode interface for stereoelectroencephalography. In International Conference on System Theory, Control and Computing, Sinaia, Romania, 2022.

M. M. P. Machado, A. Voda, G. Besanc¸on, G. Becq, O. David, and P. Kahane. System idendification-based automatic brain tissue classification for stereoelectroencephalography. In International Conference on System Theory, Control and Computing, Sinaia, Romania, 2022.

M. M. P. Machado, A. Voda, G. Besanc¸on, G. Becq, O. David, and P. Kahane. Electrode–brain interface fractional order modelling for brain tissue classification in SEEG. Biomedical Signal Processing and Control, 79:104050, 2023.

R. Magin and M. Ovadia. Modeling the cardiac tissue electrode interface using fractional calculus. Journal of Vibration and Control, 14(9- 10):1431–1442, 2008.

E. McAdams and J. Jossinet. Tissue impedance: a historical overview. Physiological measurement, 16(3A):A1, 1995.

H. McCann, G. Pisano, and L. Beltrachini. Variation in reported human head tissue electrical conductivity values. Brain topography, 32(5):825–858, 2019.

U.R. Mohan, A.J. Watrous, J.F. Miller, B.C. Lega, M.R. Sperling, G.A. Worrell, R.E. Gross, K.A. Zaghloul, B.C. Jobst, K.A. Davis, S.A. Sheth, J.M. Stein, S.R. Das, R. Gorniak, P.A. Wanda, D.S. Rizzuto, M.J. Kahana, and J. Jacobs. The effects of direct brain stimulation in humans depend on frequency, amplitude, and white-matter proximity. Brain stimulation, 13(5):1183–1195, 2020.

K. Otto, M. Johnson, and D. Kipke. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes. IEEE transactions on biomedical engineering, 53(2):333–340, 2006.

A. Oustaloup. Diversity and non-integer differentiation for system dynamics. Wiley, 2014.

I. Podlubny. Fractional differential equations. Elsevier Science, 1999.

D. Robinson. The electrical properties of metal microelectrodes. Proceedings of the IEEE, 56(6):1065–1071, 1968.

V. Sankar, E. Patrick, R. Dieme, J. Sanchez, A. Prasad, and T. Nishida. Electrode impedance analysis of chronic tungsten microwire neural implants: understanding abiotic vs. biotic contributions. Frontiers in neuroengineering, 7:13, 2014.

L. Trebaul, P. Deman, V. Tuyisenge, M. Jedynak, E. Hugues, D. Rudrauf, M. Bhattacharjee, F. Tadel, B. Chanteloup-Foret, C. Saubat, et al. Probabilistic functional tractography of the human cortex revisited. NeuroImage, 181:414–429, 2018.

S. Victor, P. Melchior, M. Pellet, and A. Oustaloup. Lung thermal transfer system identification with fractional models. IEEE Transactions on Control Systems Technology, 28(1):1–11, 2018.

A. Voda, A. Charef, D. Idiou, and M. Mulinari Pinheiro Machado. Creep modeling for piezoelectric actuators using fractional order system of commensurate order. In 21st International Conference on System Theory, Control and Computing (ICSTCC), 2017.

Downloads

Published

2023-06-30

How to Cite

[1]
M. M. P. Machado, A. Voda, G. Besançon, G. Becq, P. Kahane, and O. David, “Transfer function approaches for SEEG brain electrode interface applied to tissue classification”, Syst. Theor. Control Comput. J., vol. 3, no. 1, pp. 20–28, Jun. 2023, doi: 10.52846/stccj.2023.3.1.46.
Received 2023-01-23
Accepted 2023-06-19
Published 2023-06-30