Voice User Interface: Literature review, challenges and future directions

Authors

  • Francis Rakotomalala Université de Fianarantsoa
  • Hasindraibe Niriarijaona Randriatsarafara University of Fianarantsoa
  • Aimé Richard Hajalalaina University of Fianarantsoa
  • Ndaohialy Manda Vy Ravonimanantsoa University of Antananarivo

DOI:

https://doi.org/10.52846/stccj.2021.1.2.26

Keywords:

Artificial intelligence, Human Machine Interaction, Literature review, Machine learning, Natural language processing, Voice assistant

Abstract

Natural user interfaces are increasingly popular these days. One of the most common of these user interfaces today are voice-activated interfaces, in particular intelligent voice assistants such as Google Assistant, Alexa, Cortana and Siri.

However, the results show that although there are many services available, there is still a lot to be done to improve the usability of these systems. Speech recognition, contextual understanding and human interaction are the issues that are not yet solved in this field.

In this context, this research paper focuses on the state of the art and knowledge of work on intelligent voice interfaces, challenges and issues related to this field, in particular on interaction quality, usability, security and usability. As such, the study also examines voice assistant architecture components following the expansion of the use of technologies such as wearable computing in order to improve the user experience. Moreover, the presentation of new emerging technologies in this field will be the subject of a section in this work.

The main contributions of this paper are therefore: (1) overview of existing research, (2) analysis and exploration of the field of intelligent voice assistant systems, with details at the component level, (3) identification of areas that require further research and development, with the aim of increasing its use, (4) various proposals for research directions and orientations for future work, and finally, (5) study of the feasibility of designing a new type of voice assistant and general presentation of the latter, whose realisation will be the subject of a thesis.

References

B. Azvine, D. Djian, K. C. Tsui, et W. Wobcke, « The intelligent assistant: An overview », Intelligent Systems and Soft Computing, p. 215-238, 2000.

J. Pokojski, « Inteligent Personal Assisrant in Engineering Activities », DS 34: Proceedings EDIProD 2004, Zielona Gora, Poland, 07.-09.10. 2004, 2004.

M. Y. Ricky et R. S. Gulo, « A Personal Agents in Ubiquitous Environment: A Survey », Procedia Computer Science, vol. 59, p. 459-467, 2015.

A. Costa, P. Novais, et V. Julian, « A survey of cognitive assistants », in Personal Assistants: Emerging Computational Technologies, Springer, 2018, p. 3-16.

A. de Barcelos Silva et al., « Intelligent personal assistants: A systematic literature review », Expert Systems with Applications, vol. 147, p. 113193, 2020.

D. Rattan, R. Bhatia, et M. Singh, « Software clone detection: A systematic review », Information and Software Technology, vol. 55, no 7, p. 1165-1199, 2013.

A. Roehrs, C. A. Da Costa, R. da Rosa Righi, et K. S. F. De Oliveira, « Personal health records: a systematic literature review », Journal of medical Internet research, vol. 19, no 1, p. e13, 2017.

K. Chauhan, « Virtual Assistant: A Review », International Journal of Research in Engineering, Science and Management, vol. 3, no 7, p. 138-140, 2020.

R. Pieraccini, « From AUDREY to Siri: Is speech recognition a solved problem? », International Computer Science Institute at Berkeley, http://www.icsi.berkeley.edu/pubs/speech/audreytosiri12.pdf, 2012.

S. P. Zambiasi et R. J. Rabelo, « A proposal for reference architecture for personal assistant software based on soa », IEEE Latin America Transactions, vol. 10, no 1, p. 1227-1234, 2012.

J. Hauswald et al., « Designing future warehouse-scale computers for sirius, an end-to-end voice and vision personal assistant », ACM Transactions on Computer Systems (TOCS), vol. 34, no 1, p. 1-32, 2016.

R. Sarikaya, « The technology behind personal digital assistants: An overview of the system architecture and key components », IEEE Signal Processing Magazine, vol. 34, no 1, p. 67-81, 2017.

J. Bellegarda, « Spoken Language Understanding for Natural Interaction », 2013.

C. H. Hsieh et D. J. Buehrer, « The implementation of an artificially intelligent personal assistant for a personal computer », in Applied Mechanics and Materials, 2014, vol. 627, p. 372-376.

S. Oishi et N. Fukuta, « A cooperative task execution mechanism for personal assistant agents using ability ontology », in 2016 IEEE/WIC/ACM international conference on web intelligence (WI), 2016, p. 664-667.

C. Pozna, P. Foldesi, et J. Kovacs, « The personal assistant application, problem definition », in 2013 IEEE 4th International Conference on Cognitive Infocommunications (CogInfoCom), 2013, p. 851-856.

N. Yorke-Smith, S. Saadati, K. L. Myers, et D. N. Morley, « The design of a proactive personal agent for task management », International Journal on Artificial Intelligence Tools, vol. 21, no 01, p. 1250004, 2012.

B. Chihani, E. Bertin, et N. Crespi, « A user-centric context-aware mobile assistant », in 2013 17th International Conference on Intelligence in Next Generation Networks (ICIN), 2013, p. 110-117.

J. A. Cicció et L. Quesada, « Framework for creating audio games for intelligent personal assistants », in International Conference on Applied Human Factors and Ergonomics, 2017, p. 204-214.

R. Ponciano, S. Pais, et J. Casal, « Using accuracy analysis to find the best classifier for intelligent personal assistants », Procedia Computer Science, vol. 52, p. 310-317, 2015.

Y. Sun, N. J. Yuan, Y. Wang, X. Xie, K. McDonald, et R. Zhang, « Contextual intent tracking for personal assistants », in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, p. 273-282.

B. Popović, E. Pakoci, N. Jakovljević, G. Kočiš, et D. Pekar, « Voice assistant application for the Serbian language », in 2015 23rd Telecommunications Forum Telfor (℡FOR), 2015, p. 858-861.

S. A. Bahrainian et F. Crestani, « Towards the next generation of personal assistants: systems that know when you forget », in Proceedings of the ACM SIGIR International Conference on Theory of Information Retrieval, 2017, p. 169-176.

Y. Sun, N. J. Yuan, X. Xie, K. McDonald, et R. Zhang, « Collaborative intent prediction with real-time contextual data », ACM Transactions on Information Systems (TOIS), vol. 35, no 4, p. 1-33, 2017.

P. Milhorat, S. Schlögl, G. Chollet, J. Boudy, A. Esposito, et G. Pelosi, « Building the next generation of personal digital assistants », in 2014 1st international conference on advanced technologies for signal and image processing (atsip), 2014, p. 458-463.

J. Hauswald et al., « Sirius: An open end-to-end voice and vision personal assistant and its implications for future warehouse scale computers », in Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and Operating Systems, 2015, p. 223-238.

D. Rybach et al., « The RWTH Aachen University open source speech recognition system », 2009.

F. Seide, G. Li, et D. Yu, « Conversational speech transcription using context-dependent deep neural networks », 2011.

H. Bay, T. Tuytelaars, et L. Van Gool, « Surf: Speeded up robust features », in European conference on computer vision, 2006, p. 404-417.

A. P. Singh, R. Nath, et S. Kumar, « A survey: Speech recognition approaches and techniques », in 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), 2018, p. 1-4.

L. R. Bahl, P. F. Brown, P. V. de Souza, et R. L. Mercer, « A tree-based statistical language model for natural language speech recognition », IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no 7, p. 1001-1008, 1989.

K. M. N. Win, Z. Z. Hnin, et Y. M. K. K. Thaw, « REVIEW AND PERSPECTIVES OF NATURAL LANGUAGE PROCESSING FOR SPEECH RECOGNITION », International Journal Of All Research Writings, vol. 1, no 10, p. 112-115, 2020.

A. Chugh, K. Jerusha, et K. S. Krishnan, « A Review on Speech Recognition by Machines ».

H. Singh et A. K. Bathla, « A survey on speech recognition », Int. J. Adv. Res. Comput. Eng. Technol, vol. 2, no 6, p. 2186-2189, 2013.

S. R. by Machine, « A Review, MA Anusuya », International Journal of Computer Science and Information Security, vol. 6, no 3, 2009.

I. Shahin, A. B. Nassif, et S. Hamsa, « Novel cascaded Gaussian mixture model-deep neural network classifier for speaker identification in emotional talking environments », Neural Computing and Applications, vol. 32, no 7, p. 2575-2587, 2020.

A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, et K. Shaalan, « Speech recognition using deep neural networks: A systematic review », IEEE access, vol. 7, p. 19143-19165, 2019.

P. Wang, « Research and Design of Smart Home Speech Recognition System Based on Deep Learning », in 2020 International Conference on Computer Vision, Image and Deep Learning (CVIDL), 2020, p. 218-221.

M. Najafian, « Acoustic model selection for recognition of regional accented speech », PhD Thesis, University of Birmingham, 2016.

S. P. Panda, « Automated speech recognition system in advancement of human-computer interaction », in 2017 International Conference on Computing Methodologies and Communication (ICCMC), 2017, p. 302-306.

L. Xia, G. Chen, X. Xu, J. Cui, et Y. Gao, « Audiovisual speech recognition: A review and forecast », International Journal of Advanced Robotic Systems, vol. 17, no 6, p. 1729881420976082, 2020.

S. Dupont et J. Luettin, « Audio-visual speech modeling for continuous speech recognition », IEEE transactions on multimedia, vol. 2, no 3, p. 141-151, 2000.

J. Singh, « Machine Learning for Speaker Identification: A ».

S. S. Tirumala et S. R. Shahamiri, « A review on deep learning approaches in speaker identification », in Proceedings of the 8th international conference on signal processing systems, 2016, p. 142-147.

S. Ganvir et N. Lal, « Automatic Speaker Recognition using Transfer Learning Approach of Deep Learning Models », in 2021 6th International Conference on Inventive Computation Technologies (ICICT), 2021, p. 595-601.

I. Submitter, B. Jena, A. Mohanty, et S. K. Mohanty, « Gender Recognition and Classification of Speech Signal », Bhagyalaxmi and Mohanty, Anita and Mohanty, Subrat Kumar, Gender Recognition and Classification of Speech Signal (May 25, 2021), 2021.

M. M. Kabir, M. F. Mridha, J. Shin, I. Jahan, et A. Q. Ohi, « A Survey of Speaker Recognition: Fundamental Theories, Recognition Methods and Opportunities », IEEE Access, 2021.

F. K. Soong, A. E. Rosenberg, B.-H. Juang, et L. R. Rabiner, « Report: A vector quantization approach to speaker recognition », AT&T technical journal, vol. 66, no 2, p. 14-26, 1987.

S. Hyon, J. Dang, H. Feng, H. Wang, et K. Honda, « Detection of speaker individual information using a phoneme effect suppression method », Speech Communication, vol. 57, p. 87-100, 2014.

N. Firoozeh, A. Nazarenko, F. Alizon, et B. Daille, « Keyword extraction: Issues and methods », Natural Language Engineering, vol. 26, no 3, p. 259-291, 2020.

L. Marujo et al., « Automatic keyword extraction on twitter », in Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), 2015, p. 637-643.

T. Joachims, Learning to classify text using support vector machines, vol. 668. Springer Science & Business Media, 2002.

A. Onan, S. Korukoğlu, et H. Bulut, « Ensemble of keyword extraction methods and classifiers in text classification », Expert Systems with Applications, vol. 57, p. 232-247, 2016.

P. Ni, Y. Li, et V. Chang, « Research on Text Classification Based on Automatically Extracted Keywords », International Journal of Enterprise Information Systems (IJEIS), vol. 16, no 4, p. 1-16, 2020.

S. K. Biswas, M. Bordoloi, et J. Shreya, « A graph based keyword extraction model using collective node weight », Expert Systems with Applications, vol. 97, p. 51-59, 2018.

K. S. Jones, « A statistical interpretation of term specificity and its application in retrieval », Journal of documentation, 1972.

A. Jain, K. Mittal, et K. S. Vaisla, « FLAKE: Fuzzy Graph Centrality-based Automatic Keyword Extraction », The Computer Journal, 2020.

M. Bordoloi, P. C. Chatterjee, S. K. Biswas, et B. Purkayastha, « Keyword extraction using supervised cumulative TextRank », Multimedia Tools and Applications, vol. 79, no 41, p. 31467-31496, 2020.

K. S. Hasan et V. Ng, « Automatic keyphrase extraction: A survey of the state of the art », in Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2014, p. 1262-1273.

E. Papagiannopoulou et G. Tsoumakas, « A review of keyphrase extraction », Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 10, no 2, p. e1339, 2020.

C. Sun, L. Hu, S. Li, T. Li, H. Li, et L. Chi, « A Review of Unsupervised Keyphrase Extraction Methods Using Within-Collection Resources », Symmetry, vol. 12, no 11, p. 1864, 2020.

K. S. Hasan et V. Ng, « Conundrums in unsupervised keyphrase extraction: making sense of the state-of-the-art », in Coling 2010: Posters, 2010, p. 365-373.

C. Fellbaum, « A semantic network of English verbs », WordNet: An electronic lexical database, vol. 3, p. 153-178, 1998.

X. Wan, J. Yang, et J. Xiao, « Towards an iterative reinforcement approach for simultaneous document summarization and keyword extraction », in Proceedings of the 45th annual meeting of the association of computational linguistics, 2007, p. 552-559.

J. Martinez-Romo, L. Araujo, et A. Duque Fernandez, « S em G raph: Extracting keyphrases following a novel semantic graph-based approach », Journal of the Association for Information Science and Technology, vol. 67, no 1, p. 71-82, 2016.

H. Alrehamy et C. Walker, « Exploiting extensible background knowledge for clustering-based automatic keyphrase extraction », Soft Computing, vol. 22, no 21, p. 7041-7057, 2018.

Z. Liu, P. Li, Y. Zheng, et M. Sun, « Clustering to find exemplar terms for keyphrase extraction », in Proceedings of the 2009 conference on empirical methods in natural language processing, 2009, p. 257-266.

G. Rabby, S. Azad, M. Mahmud, K. Z. Zamli, et M. M. Rahman, « Teket: a tree-based unsupervised keyphrase extraction technique », Cognitive Computation, vol. 12, no 4, p. 811-833, 2020.

J. Devlin, M.-W. Chang, K. Lee, et K. Toutanova, « Bert: Pre-training of deep bidirectional transformers for language understanding », arXiv preprint arXiv:1810.04805, 2018.

M. E. Peters et al., « Deep contextualized word representations », arXiv preprint arXiv:1802.05365, 2018.

J. Lee et al., « BioBERT: a pre-trained biomedical language representation model for biomedical text mining », Bioinformatics, vol. 36, no 4, p. 1234-1240, 2020.

I. Beltagy, A. Cohan, et K. Lo, « Scibert: Pretrained contextualized embeddings for scientific text », arXiv preprint arXiv:1903.10676, vol. 1, no 1.3, p. 8, 2019.

D. Sahrawat et al., « Keyphrase extraction as sequence labeling using contextualized embeddings », Advances in Information Retrieval, vol. 12036, p. 328, 2020.

Z. Huang, W. Xu, et K. Yu, « Bidirectional LSTM-CRF models for sequence tagging », arXiv preprint arXiv:1508.01991, 2015.

H. Zhang, D. Long, G. Xu, P. Xie, F. Huang, et J. Wang, « Keyphrase Extraction with Dynamic Graph Convolutional Networks and Diversified Inference », arXiv preprint arXiv:2010.12828, 2020.

D. Han, X. Song, et Y. Cui, « An Extractive Chat Summary Generation Method for Ecommerce Chatbots », DEStech Transactions on Computer Science and Engineering, no cisnr, 2020.

T. Behere, A. Vaidya, A. Birhade, K. Shinde, P. Deshpande, et S. Jahirabadkar, « Text Summarization and Classification of Conversation Data between Service Chatbot and Customer », in 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), 2020, p. 833-838.

A. Scherbakova, « Comparative Study Of Data Clustering Algorithms And Analysis Of The Keywords Extraction Efficiency: Learner Corpus Case », Higher School of Economics Research Paper No. WP BRP, vol. 97, 2020.

M. Pikies, A. Riyono, et J. Ali, « Novel Keyword Extraction and Language Detection Approaches », arXiv preprint arXiv:2009.11832, 2020.

Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, et Xln. Le Q, « generalized autoregressive pretraining for language understanding. arXiv 2019; 1906.08237 ». 1906.

D. Cer et al., « Universal sentence encoder », arXiv preprint arXiv:1803.11175, 2018.

X. Zhu, C. Lyu, D. Ji, H. Liao, et F. Li, « Deep neural model with self-training for scientific keyphrase extraction », Plos one, vol. 15, no 5, p. e0232547, 2020.

I. Gagliardi et M. T. Artese, « Semantic unsupervised automatic keyphrases extraction by integrating word embedding with clustering methods », Multimodal Technologies and Interaction, vol. 4, no 2, p. 30, 2020.

J. Wang, G. Su, C. Wan, X. Huang, et L. Sun, « A Keyword-Based Literature Review Data Generating Algorithm—Analyzing a Field from Scientific Publications », Symmetry, vol. 12, no 6, p. 903, 2020.

L. Grassi, C. T. Recchiuto, et A. Sgorbissa, « A Knowledge-Based Conversation System for Robots and Smart Assistants », PhD Thesis, University of Genoa, 2020.

P. Zhong, Y. Liu, H. Wang, et C. Miao, « Keyword-Guided Neural Conversational Model », in Proceedings of the AAAI Conference on Artificial Intelligence, 2021, vol. 35, p. 14568-14576.

S. Zhang, E. Dinan, J. Urbanek, A. Szlam, D. Kiela, et J. Weston, « Personalizing dialogue agents: I have a dog, do you have pets too? », arXiv preprint arXiv:1801.07243, 2018.

R. Shukla, « Keywords Extraction and Sentiment Analysis using Automatic Speech Recognition », arXiv preprint arXiv:2004.04099, 2020.

A. Ekbal, « Towards building an affect-aware dialogue agent with deep neural networks », CSI Transactions on ICT, vol. 8, no 2, p. 249-255, 2020.

I. Sutskever, O. Vinyals, et Q. V. Le, « Sequence to sequence learning with neural networks », in Advances in neural information processing systems, 2014, p. 3104-3112.

J. Prassanna, K. Khadar Nawas, C. Jackson, R. Prabakaran, et S. Ramanath, « Towards Building A Neural Conversation Chatbot Through Seq2Seq Model ».

W. Zhang, « Intelligent Personal Assistant Dialog Generation using Paraphrasing ».

Y. Fu, Y. Feng, et J. P. Cunningham, « Paraphrase generation with latent bag of words », arXiv preprint arXiv:2001.01941, 2020.

R. Pugalenthi, A. P. Chakkaravarthy, J. Ramya, S. Babu, et R. R. Krishnan, « Artificial learning companionusing machine learning and natural language processing », International Journal of Speech Technology, p. 1-8, 2020.

G. López, L. Quesada, et L. A. Guerrero, « Alexa vs. Siri vs. Cortana vs. Google Assistant: a comparison of speech-based natural user interfaces », in International Conference on Applied Human Factors and Ergonomics, 2017, p. 241-250.

A. S. Tulshan et S. N. Dhage, « Survey on virtual assistant: Google assistant, siri, cortana, alexa », in International symposium on signal processing and intelligent recognition systems, 2018, p. 190-201.

A. Berdasco, G. López, I. Diaz, L. Quesada, et L. A. Guerrero, « User experience comparison of intelligent personal assistants: Alexa, Google Assistant, Siri and Cortana », in Multidisciplinary Digital Publishing Institute Proceedings, 2019, vol. 31, p. 51.

M. Johnston et al., « Mva: The multimodal virtual assistant », in Proceedings of the 15th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL), 2014, p. 257-259.

U. Saad, U. Afzal, A. El-Issawi, et M. Eid, « A model to measure QoE for virtual personal assistant », Multimedia Tools and Applications, vol. 76, no 10, p. 12517-12537, 2017.

L. Le Bigot, L. Caroux, C. Ros, A. Lacroix, et V. Botherel, « Investigating memory constraints on recall of options in interactive voice response system messages », Behaviour & Information Technology, vol. 32, no 2, p. 106-116, 2013.

R. R. Baeza et A. R. Kumar, « Perceived Usefulness of Multimodal Voice Assistant Technology », in Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2019, vol. 63, p. 1560-1564.

G. Campagna, R. Ramesh, S. Xu, M. Fischer, et M. S. Lam, « Almond: The architecture of an open, crowdsourced, privacy-preserving, programmable virtual assistant », in Proceedings of the 26th International Conference on World Wide Web, 2017, p. 341-350.

E. V. Polyakov, M. S. Mazhanov, A. Y. Rolich, L. S. Voskov, M. V. Kachalova, et S. V. Polyakov, « Investigation and development of the intelligent voice assistant for the Internet of Things using machine learning », in 2018 Moscow Workshop on Electronic and Networking Technologies (MWENT), 2018, p. 1-5.

M. Chkroun et A. Azaria, « Lia: A virtual assistant that can be taught new commands by speech », International Journal of Human–Computer Interaction, vol. 35, no 17, p. 1596-1607, 2019.

A. Azaria, J. Krishnamurthy, et T. M. Mitchell, « Instructable intelligent personal agent », 2016.

M. Braun, A. Mainz, R. Chadowitz, B. Pfleging, et F. Alt, « At your service: Designing voice assistant personalities to improve automotive user interfaces », in Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 2019, p. 1-11.

C. Nass et al., « Improving automotive safety by pairing driver emotion and car voice emotion », in CHI’05 extended abstracts on Human factors in computing systems, 2005, p. 1973-1976.

B. F. Malle et S. Thapa Magar, « What kind of mind do I want in my robot? Developing a measure of desired mental capacities in social robots », in Proceedings of the companion of the 2017 ACM/IEEE international conference on human-robot interaction, 2017, p. 195-196.

B. D. Kuzmin, « Kentico Voice Interface (KEVIN) ».

P. Mane, S. Sonone, N. Gaikwad, et J. Ramteke, « Smart personal assistant using machine learning », in 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), 2017, p. 368-371.

P. Vashistha, J. P. Singh, P. Jain, et J. Kumar, « Raspberry Pi based voice-operated personal assistant (Neobot) », in 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), 2019, p. 974-978.

P. Darda et R. M. Chitnis, « A Review on Voice Assistant Adoption in Service Sector ».

P. Bartie et al., « A dialogue based mobile virtual assistant for tourists: The SpaceBook Project », Computers, Environment and Urban Systems, vol. 67, p. 110-123, 2018.

J. Austerjost et al., « Introducing a virtual assistant to the lab: A voice user interface for the intuitive control of laboratory instruments », SLAS TECHNOLOGY: Translating Life Sciences Innovation, vol. 23, no 5, p. 476-482, 2018.

M. Barata, A. G. Salman, I. Faahakhododo, et B. Kanigoro, « Android based voice assistant for blind people », Library Hi Tech News, 2018.

M. A. Hossain et M. J. U. Qureshi, « IoT Based Medical Assistant Robot (Docto-Bot) ».

K. Laeeq et Z. A. Memon, « An Integrated Model to Enhance Virtual Learning Environments with Current Social Networking Perspective. », International Journal of Emerging Technologies in Learning, vol. 13, no 9, 2018.

J. Bartolotta, J. Newmark, et T. Bourelle, « Engaging with online design: Undergraduate user-participants and the practice-level struggles of usability learning », Communication Design Quarterly Review, vol. 5, no 3, p. 63-72, 2018.

H. S. Harris et M. Greer, « Over, under, or through: Design strategies to supplement the LMS and enhance interaction in online writing courses », Communication Design Quarterly Review, vol. 4, no 4, p. 46-54, 2017.

P. C. de Oliveira, C. J. C. de A. Cunha, et M. K. Nakayama, « Learning Management Systems (LMS) and e-learning management: an integrative review and research agenda », JISTEM-Journal of Information Systems and Technology Management, vol. 13, p. 157-180, 2016.

K. Laeeq et Z. A. Memon, « Scavenge: An intelligent multi-agent based voice-enabled virtual assistant for LMS », Interactive Learning Environments, p. 1-19, 2019.

J. Jyothy et K. S. Kurian, « Mobile OS–Comparative study. Journal of engineering », Computers & Applied Sciences (JEC&AS), vol. 2, no 10, 2013.

F. A. M. Fonte, M. L. Nistal, M. L. Nistal, et M. C. Rodríguez, « NLAST: A natural language assistant for students », in 2016 IEEE global engineering education conference (EDUCON), 2016, p. 709-713.

P.-S. Chiu, J.-W. Chang, M.-C. Lee, C.-H. Chen, et D.-S. Lee, « Enabling intelligent environment by the design of emotionally aware virtual assistant: A case of smart campus », IEEE Access, vol. 8, p. 62032-62041, 2020.

R. Bogdan, A. Tatu, M. M. Crisan-Vida, M. Popa, et L. Stoicu-Tivadar, « A Practical Experience on the Amazon Alexa Integration in Smart Offices », Sensors, vol. 21, no 3, p. 734, 2021.

P. Dhakal, P. Damacharla, A. Y. Javaid, et V. Devabhaktuni, « A near real-time automatic speaker recognition architecture for voice-based user interface », Machine Learning and Knowledge Extraction, vol. 1, no 1, p. 504-520, 2019.

J. Krishnan, P. Coronado, et T. Reed, « SEVA: A Systems Engineer’s Virtual Assistant. », 2019.

N. Oukrich, « Daily Human Activity Recognition in Smart Home based on Feature Selection, Neural Network and Load Signature of Appliances », PhD Thesis, Université Mohamed V; Ecole Mohammadia d’Ingénieurs-Université Mohammed V de …, 2019.

C. Lee, D. Han, H. Jin, et A. Oh, « automaTA: Human-Machine Interaction for Answering Context-Specific Questions », in Proceedings of the Sixth (2019) ACM Conference on Learning@ Scale, 2019, p. 1-4.

F. Rea, A. Vignolo, A. Sciutti, et N. Noceti, « Human motion understanding for selecting action timing in collaborative human-robot interaction », Frontiers in Robotics and AI, vol. 6, p. 58, 2019.

L.-P. Schaub et C. Vaudapiviz, « Les systèmes de dialogue orientés-but: état de l’art et perspectives d’amélioration », 2019.

M. Bâce, S. Staal, et A. Bulling, « How far are we from quantifying visual attention in mobile HCI? », IEEE Pervasive Computing, vol. 19, no 2, p. 46-55, 2020.

Y.-W. Chao, « Visual Recognition and Synthesis of Human-Object Interactions », PhD Thesis, 2019.

Downloads

Published

2021-12-31

How to Cite

[1]
F. Rakotomalala, H. N. Randriatsarafara, A. R. Hajalalaina, and N. M. V. Ravonimanantsoa, “Voice User Interface: Literature review, challenges and future directions”, Syst. Theor. Control Comput. J., vol. 1, no. 2, pp. 65–89, Dec. 2021, doi: 10.52846/stccj.2021.1.2.26.
Received 2021-11-30
Accepted 2021-12-30
Published 2021-12-31