# Distributed Buck Converter Realization Based on a Transmission Line

## DOI:

https://doi.org/10.52846/stccj.2023.3.1.47## Keywords:

buck converter, transmission line, partial differential equations, distributed systems, circuit simulation## Abstract

The buck converter is a widely used switched converter to adapt a higher DC voltage to a lower DC voltage. In the conventional design, the converter has two reactive elements, an inductor and a capacitor. Replacing these dynamical elements by a transmission line results in a distributed buck converter. Modeling the transmission line by the telegrapher's equations yields a model with completely new properties. We investigate the behavior of this system and present a practical circuit realization.

## References

R. W. Erickson and D. Maksimovic, Fundamentals of power electronics, Springer Science & Business Media, 2007.

S. Bacha, I. Munteanu, and A. I. Bratcu, Power Electronic Converters Modeling and Control, Springer-Verlag, London, 2014.

S. Dahale, A. Das, N. M. Pindoriya, and S. Rajendran, “An overview of DC-DC converter topologies and controls in DC microgrid,” in 2017 7th International Conference on Power Systems (ICPS), 2017, pp. 410–415.

E. Levi, N. Bodo, O. Dordevic, and M. Jones, “Recent advances in power electronic converter control for multiphase drive systems,” in 2013 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), 2013, pp. 158–167.

A. Gensior, O. Woywode, J. Rudolph, and H. G¨uldner, “On differential flatness, trajectory planning, observers, and stabilization for DC-DC converts,” IEEE Transations on Circuits and Systems I, vol. 53, no. 9, pp. 2000–2010, 2006.

A. Gensior, H. Sira-Ram´ırez, J. Rudolph, and H. Guldner, “On some nonlinear current controllers for three-phase boost rectifiers,” IEEE Transactions on Industrial Electronics, vol. 56, no. 2, pp. 360–370, 2008.

H. B¨arnklau, A. Gensior, and J. Rudolph, “A model-based control scheme for modular multilevel converters,” IEEE Transactions on Industrial Electronics, vol. 60, no. 12, pp. 5359–5375, 2012.

K. R¨obenack, Nichtlineare Regelungssysteme: Theorie und Anwendung der exakten Linearisierung, Springer Vieweg, Berlin, Heidelberg, 2017.

J. W. Kolar, T. Friedli, J. Rodriguez, and P. W. Wheeler, “Review of three-phase PWM AC-AC converter topologies,” IEEE Transactions on Industrial Electronics, vol. 58, no. 11, pp. 4988–5006, 2011.

M. A. Perez, S. Bernet, J. Rodriguez, S. Kouro, and R. Lizana, “Circuit topologies, modeling, control schemes, and applications of modular multilevel converters,” IEEE Transactions on Power Electronics, vol. 30, no. 1, pp. 4–17, 2014.

M. B. F. Prieto, S. P. Litran, E. D. Aranda, and J. M. E. Gomez, “New single-input, multiple-output converter topologies: Combining singleswitch nonisolated DC-DC converters for single-input, multiple-output applications,” IEEE Industrial Electronics Magazine, vol. 10, no. 2, pp. 6–20, 2016.

M. Zainea, A. van der Schaft, and J. Buisson, “Stabilizing control for power converters connected to transmission lines,” in 2007 American Control Conference, 2007, pp. 3476–3481.

J. Daafouz, M. Tucsnak, and J. Valein, “Nonlinear control of a coupled PDE/ODE system modeling a switched power converter with a transmission line,” Systems & Control Letters, vol. 70, pp. 92–99, 2014.

J. W. Phinney, Multi-resonant passive components for power conversion, Ph.D. thesis, Massachusetts Institute of Technology, 2005.

J.W. Phinney, D. J. Perreault, and J. H. Lang, “Radio-frequency inverters with transmission-line input networks,” IEEE Transactions on Power Electronics, vol. 22, no. 4, pp. 1154–1161, 2007.

S. Sander, “Buck and boost converters with transmission lines,” IEEE Transactions on Power Electronics, vol. 27, no. 9, pp. 4013–4020, 2012.

S. Sander and A. Karvonen, “Semiconductor component reduction in AC/DC converters with transmission lines,” in 15th European Conference on Power Electronics and Applications (EPE), 2013, p. 1–10.

C. Huang, F. Woittennek, and K. R¨obenack, “Steady-state analysis of a distributed model of the buck converter,” in European Conference on Circuit Theory and Design (ECCTD), 2013, p. 1–4.

C. Huang, F. Woittennek, and K. R¨obenack, “Distributed parameter model of the buck converter with constant inductive load,” IFACPapersOnLine, vol. 48, no. 1, pp. 691–692, 2015, 8th Vienna International Conference on Mathematical Modelling (MATHMOD 2015).

K. R¨obenack and S. Palis, “Set-point control of a spatially distributed buck converter,” Algorithms, vol. 16, no. 1, 2023.

K. R¨obenack and R. Herrmann, “Analysis, simulation and implementation of a distributed buck converter,” in 26th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 2022, pp. 213–218.

B. Arbetter, R. Erickson, and D. Maksimovic, “DC-DC converter design for battery-operated systems,” in Proceedings of PESC’95-Power Electronics Specialist Conference, 1995, vol. 1, pp. 103–109.

W. P. King, Transmission Line Theory, Dover Publications, Inc., 1965.

W. Mathis and A. Reibiger, K¨upfm¨uller Theoretische Elektrotechnik, Springer Vieweg, 20th edition, 2017.

TimKabel, RG 58 C/U 50 Ω, Coaxial cable, http://www.tim-kabel.hr/images/stories/katalog/datasheetHRV/1502_RG58_ENG.pdf.

“Ngspice, the open source Spice circuit simulator,” https://ngspice.sourceforge.io/.

“GNU Octave,” http://www.gnu.org/software/octave/.

R. Herrmann, “Analyse, Reglerentwurf und Simulation einer verteiltparametrischen Konverterschaltung,” Diploma thesis, TU Dresden, Institute f Control Theory, Faculty of Electrical and Computer Engineering, Dresden, Germany, 2016.

“QUCS (Quite universal circuit simulator),” http://qucs.sourceforge.net/index.html.

Continental-Device-India, 2N2222, NPN-Transistor, http://cdn-reichelt.de/documents/datenblatt/A100/2N2222-CDIL.pdf.

## Downloads

## Published

## Issue

## Section

## How to Cite

*Syst. Theor. Control Comput. J.*, vol. 3, no. 1, pp. 29–35, Jun. 2023, doi: 10.52846/stccj.2023.3.1.47.